scholarly journals Influence of Selected Antibiotics on the Tomato Regeneration in In Vitro Cultures

Author(s):  
Aneta GERSZBERG ◽  
Izabela GRZEGORCZYK-KAROLAK

Generally, antimicrobial agents are frequently used in micropropagation techniques to obtain free elite clones or after genetic transformation to select putative transformants. Their successful application minimizes bacterial contamination however; they may be phytotoxic and may diversely affect the regeneration ability in plant tissue cultures. The objective of the current study was to estimate the effects of four antibiotics i.e. ampicillin, carbenicillin, cefotaxime and kanamycin on morphogenesis of three Polish tomato cultivars, cultured on MS medium with phytohormones. In this experiment the ability of tomato cotyledon explants to regenerate entire plants via indirect organogenesis was tested. Among four antibiotics tested, kanamycin was most harmful for the explants. This antibiotic, even at low doses (10-20 mg/L), inhibited tomato morphogenesis. On the other hand, the current study revealed significant influence of different concentrations of ampicillin, carbenicillin, cefotaxime on the frequency of bud formation. While the addition of cefotaxime at low concentration (100-200 mg/L) stimulated the bud formation, its increasing concentration adversely affected the organogenesis of tomato. The results clearly pointed out that carbenicillin and ampicillin at low concentrations (100-400 mg/L) were not only non-toxic, but they promoted bud regeneration. The obtained results show the crucial role not only of use of efficient antibiotics, but also of their proper doses in obtaining successful transformation and regeneration of tomato.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********

2021 ◽  
Vol 31 (1) ◽  
pp. 1-12
Author(s):  
PV Chaithanya Lakshmi ◽  
CM Narendra Reddy ◽  
B Srinivas

In general, antimicrobial agents are often used in micropropagation techniques to obtain contaminant free clones. The objective of the present study was to evaluate the effects of bavistin and cefotaxime on producing contaminant free plants of Ruellia tuberosa cultured on MS supplemented with phytohormones. Field grown nodal explants of Ruellia tuberosa was used to regenerate entire plants via direct organogenesis. Among the decontaminants tested, the fungicide bavistin along with higher concentration of BAP (2.0 mg/l) and lower concentration of NAA (1.0 mg/l) was the most effective in regeneration and producing contaminant free shoots from cultured explants. This fungicide at 300 mg/l minimised fungal contamination with survival rate of 54%. While the addition of decontaminant cefotaxime at low concentration (200 mg/l) along with same concentration of BAP and NAA stimulated the bud formation and controlled the bacterial contamination. However, its increasing concentration adversely affected the survival rate of Ruellia tuberosa. These findings clearly showed that low concentrations of bavistin and cefotaxime were not only non-toxic but also facilitated bud regeneration. The results achieved showed the decisive role not only of the use of successful fungicides and antibiotics, but also of their sufficient doses were very important in reducing contamination and helping multiple shoot proliferation. Plant Tissue Cult. & Biotech. 31(1): 1-12, 2021 (June)


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 188 ◽  
Author(s):  
Alberto Antonelli ◽  
Luca Giovannini ◽  
Ilaria Baccani ◽  
Valentina Giuliani ◽  
Riccardo Pace ◽  
...  

The recent increase in infections mediated by drug-resistant bacterial and fungal pathogens underlines the urgent need for novel antimicrobial compounds. In this study, the antimicrobial activity (inhibitory and cidal) of HybenX®, a novel dessicating agent, in comparison with commonly used sodium hypochlorite and chlorhexidine, against a collection of bacterial and yeast strains representative of the most common human pathogenic species was evaluated. The minimal inhibitory, bactericidal, and fungicidal concentrations (MIC, MBC, and MFC, respectively) of the three different antimicrobial agents were evaluated by broth microdilution assays, followed by subculturing of suitable dilutions. HybenX® was active against 26 reference strains representative of staphylococci, enterococci, Enterobacterales, Gram-negative nonfermenters, and yeasts, although at higher concentrations than sodium hypochlorite and chlorhexidine. HybenX® MICs were 0.39% for bacteria (with MBCs ranging between 0.39% and 0.78%), and 0.1–0.78% for yeasts (with MFCs ranging between 0.78% and 1.6%). HybenX® exhibited potent inhibitory and cidal activity at low concentrations against several bacterial and yeast pathogens. These findings suggest that HybenX® could be of interest for the treatment of parodontal and endodontic infections and also for bacterial and fungal infections of other mucous membranes and skin as an alternative to sodium hypochlorite and chlorhexidine.


2016 ◽  
Vol 44 (2) ◽  
pp. 452-458 ◽  
Author(s):  
Aneta GERSZBERG ◽  
Katarzyna HNATUSZKO-KONKA ◽  
Tomasz KOWALCZYK ◽  
Andrzej K. KONONOWICZ

The major goal of this research was to establish a stable regeneration system for tomato cultivars in order to lay the foundations for the future genetic transformation of the tomato. The regeneration ability of two kinds of explants (cotyledons and hypocotyl segments) was compared for three Polish cultivars of the tomato (Solanum lycopersicum). Explants were cultured on 10 different regeneration media (basal mediums MS or B5, and with a combination of 6-benzylaminopurine (BAP) and indole-3-acetic acid (IAA). It was found that the ability to regenerate was substantially dependent on the cultivars, as well as on the kind of explant. The best explants for inducing shoot regeneration were cotyledons, followed by hypocotyls. It was noticed that the best formulation of the medium for this regeneration from the two types of explants used in this study, is MS with 2 mg/L BA and 0.1 mg/L IAA.  Tomato shoots were transferred to a ½ MS medium and ½ MS complemented with 0.1 mg/L IAA for rooting and all of them responded positively to the rooting medium.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


1989 ◽  
Vol 61 (02) ◽  
pp. 254-258 ◽  
Author(s):  
Margaret L Rand ◽  
Peter L Gross ◽  
Donna M Jakowec ◽  
Marian A Packham ◽  
J Fraser Mustard

SummaryEthanol, at physiologically tolerable concentrations, inhibits platelet responses to low concentrations of collagen or thrombin, but does not inhibit responses of washed rabbit platelets stimulated with high concentrations of ADP, collagen, or thrombin. However, when platelet responses to high concentrations of collagen or thrombin had been partially inhibited by prostacyclin (PGI2), ethanol had additional inhibitory effects on aggregation and secretion. These effects were also observed with aspirin- treated platelets stimulated with thrombin. Ethanol had no further inhibitory effect on aggregation of platelets stimulated with ADP, or the combination of ADP and epinephrine. Thus, the inhibitory effects of ethanol on platelet responses in the presence of PGI2 were very similar to its inhibitory effects in the absence of PGI2, when platelets were stimulated with lower concentrations of collagen or thrombin. Ethanol did not appear to exert its inhibitory effects by increasing cyclic AMP above basal levels and the additional inhibitory effects of ethanol in the presence of PGI2 did not appear to be brought about by further increases in platelet cyclic AMP levels.


1970 ◽  
Vol 23 (03) ◽  
pp. 601-620 ◽  
Author(s):  
Th. B Tschopp

SummaryAggregation of cat platelets in the citrated plasma is examined by means of Born’s absorptiometer. A marked tendency of the platelets of this species to spontaneous aggregation necessitated first of all the development of an improved technique of blood collection.A hypothesis according to which 5-HT is released from the platelets, explains the absence of oscillations on the base line of the absorptiometer, the absence of platelet swelling, when ADP is added, and the effect of stirring on the aggregation curves in cat PRP. The average volume of cat platelets amounts to 10.46 μ3 when directly fixed in the blood, when fixed from PRP to 12.17 μ3, when fixed from stirred PRP to 13.51 μ3.In low concentrations (0.3-2 μM) ADP produce reversible aggregation; in narrowly restricted, individually dissimilar mean concentrations irreversible aggregation in two phases and in high concentrations, irreversible aggregation in one phase. Like ADP serotonin produces 2 phase irreversible aggregation in concentrations of 3-10 μM, but unlike ADP, the aggregation velocity decreases again with high 5-HT concentrations (>100 μM). Adrenaline does not produce aggregation and it is likely that adenosine and adenosine monophosphate inhibit the aggregation by serotonin but not by ADP. Species differences in the aggregation of human, rabbit and cat platelets are discussed.


2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


Author(s):  
M.A. Tyumentseva ◽  
◽  
A.I. Tyumentsev ◽  
V.G. Akimkin ◽  
◽  
...  

For the effective functioning of supervisory and health monitoring services, it is necessary to introduce modern molecular technologies into their practice. Therefore, the task of developing new effective methods for detecting pathogen, for example HIV, based on CRISPR/CAS genome editing systems, remains urgent. In the present work, guide RNAs and specific oligonucleotides were developed for preliminary amplification of highly conserved regions of the HIV-1 genome. The developed guide RNAs make it possible to detect single copies of HIV-1 proviral DNA in vitro as part of CRISPR/CAS ribonucleoprotein complexes in biological samples after preliminary amplification.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 557d-557
Author(s):  
Jennifer Warr ◽  
Fenny Dane ◽  
Bob Ebel

C6 volatile compounds are known to be produced by the plant upon pathogen attack or other stress-related events. The biological activity of many of these substances is poorly understood, but some might produce signal molecules important in host–pathogen interactions. In this research we explored the possibility that lipid-derived C6 volatiles have a direct effect on bacterial plant pathogens. To this purpose we used a unique tool, a bacterium genetically engineered to bioluminesce. Light-producing genes from a fish-associated bacterium were introduced into Xanthomonas campestris pv. campestris, enabling nondestructive detection of bacteria in vitro and in the plant with special computer-assisted camera equipment. The effects of different C6 volatiles (trans-2 hexanal, trans-2 hexen-1-ol and cis-3 hexenol) on growth of bioluminescent Xanthomonas campestris were investigated. Different volatile concentrations were used. Treatment with trans-2 hexanal appeared bactericidal at low concentrations (1% and 10%), while treatments with the other volatiles were not inhibitive to bacterial growth. The implications of these results with respect to practical use of trans-2 hexanal in pathogen susceptible and resistant plants will be discussed.


Sign in / Sign up

Export Citation Format

Share Document