scholarly journals Standardization of a method to study angiogenesis in a mouse model

2013 ◽  
Vol 85 (4) ◽  
pp. 1483-1487
Author(s):  
DAVID FEDER ◽  
FABIO F. PERRAZO ◽  
EDIMAR C. PEREIRA ◽  
SILVANA FORSAIT ◽  
CECILIA K.R. FEDER ◽  
...  

In the adult organism, angiogenesis is restricted to a few physiological conditions. On the other hand, uncontrolled angiogenesis have often been associated to angiogenesis-dependent pathologies. A variety of animal models have been described to provide more quantitative analysis of in vivo angiogenesis and to characterize pro- and antiangiogenic molecules. However, it is still necessary to establish a quantitative, reproducible and specific method for studies of angiogenesis factors and inhibitors. This work aimed to standardize a method for the study of angiogenesis and to investigate the effects of thalidomide on angiogenesis. Sponges of 0.5 x 0.5 x 0.5 cm were implanted in the back of mice groups, control and experimental (thalidomide 200 mg/K/day by gavage). After seven days, the sponges were removed. The dosage of hemoglobin in sponge and in circulation was performed and the ratio between the values was tested using nonparametric Mann-Whitney test. Results have shown that sponge-induced angiogenesis quantitated by ratio between hemoglobin content in serum and in sponge is a helpful model for in vivo studies on angiogenesis. Moreover, it was observed that sponge-induced angiogenesis can be suppressed by thalidomide, corroborating to the validity of the standardized method.

2019 ◽  
Vol 14 (6) ◽  
pp. 504-518 ◽  
Author(s):  
Dilcele Silva Moreira Dziedzic ◽  
Bassam Felipe Mogharbel ◽  
Priscila Elias Ferreira ◽  
Ana Carolina Irioda ◽  
Katherine Athayde Teixeira de Carvalho

This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords “ADIPOSE”, “CELLS”, and “PERIODONTAL”, with the Boolean operator “AND”. A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.


2021 ◽  
Vol 8 (4) ◽  
pp. 59
Author(s):  
Elisabete Nascimento-Gonçalves ◽  
Bruno A.L. Mendes ◽  
Rita Silva-Reis ◽  
Ana I. Faustino-Rocha ◽  
Adelina Gama ◽  
...  

Colorectal cancer is one of the most common gastrointestinal malignancies in humans, affecting approximately 1.8 million people worldwide. This disease has a major social impact and high treatment costs. Animal models allow us to understand and follow the colon cancer progression; thus, in vivo studies are essential to improve and discover new ways of prevention and treatment. Dietary natural products have been under investigation for better and natural prevention, envisioning to show their potential. This manuscript intends to provide the readers a review of rodent colorectal cancer models available in the literature, highlighting their advantages and disadvantages, as well as their potential in the evaluation of several drugs and natural compounds’ effects on colorectal cancer.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 667
Author(s):  
Meera Krishnan ◽  
Sahil Kumar ◽  
Luis Johnson Kangale ◽  
Eric Ghigo ◽  
Prasad Abnave

Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).


2022 ◽  
Vol 23 (2) ◽  
pp. 724
Author(s):  
Agata Gurba ◽  
Przemysław Taciak ◽  
Mariusz Sacharczuk ◽  
Izabela Młynarczuk-Biały ◽  
Magdalena Bujalska-Zadrożny ◽  
...  

Cancer is one of the leading causes of morbidity and mortality worldwide. Colorectal cancer (CRC) is the third most frequently diagnosed cancer in men and the second in women. Standard patterns of antitumor therapy, including cisplatin, are ineffective due to their lack of specificity for tumor cells, development of drug resistance, and severe side effects. For this reason, new methods and strategies for CRC treatment are urgently needed. Current research includes novel platinum (Pt)- and other metal-based drugs such as gold (Au), silver (Ag), iridium (Ir), or ruthenium (Ru). Au(III) compounds are promising drug candidates for CRC treatment due to their structural similarity to Pt(II). Their advantage is their relatively good solubility in water, but their disadvantage is an unsatisfactory stability under physiological conditions. Due to these limitations, work is still underway to improve the formula of Au(III) complexes by combining with various types of ligands capable of stabilizing the Au(III) cation and preventing its reduction under physiological conditions. This review summarizes the achievements in the field of stable Au(III) complexes with potential cytotoxic activity restricted to cancer cells. Moreover, it has been shown that not nucleic acids but various protein structures such as thioredoxin reductase (TrxR) mediate the antitumor effects of Au derivatives. The state of the art of the in vivo studies so far conducted is also described.


2002 ◽  
Vol 282 (2) ◽  
pp. F265-F270 ◽  
Author(s):  
Claudia A. Bertuccio ◽  
Fernando R. Ibarra ◽  
Jorge E. Toledo ◽  
Elvira E. Arrizurieta ◽  
Rodolfo S. Martin

Previous reports have shown a stimulatory effect of vasopressin (VP) on Na-K-ATPase and rBSC-1 expression and activity. Whether these VP-dependent mechanisms are operating in vivo in physiological conditions as well as in chronic renal failure (CRF) has been less well studied. We measured ATPase expression and activity and rBSC-1 expression in the outer medulla of controls and moderate CRF rats both before and under in vivo inhibition of VP by OPC-31260, a selective V2-receptor antagonist. OPC-31260 decreased Na-K-ATPase activity from 11.2 ± 1.5 to 3.7 ± 0.8 in controls ( P < 0.05) and from 19.0 ± 0.8 to 2.9 ± 0.5 μmol Pi · mg protein−1 · h−1 in moderate CRF rats ( P < 0.05). CRF was associated with a significant increase in Na-K-ATPase activity ( P < 0.05). Similarly, CRF was also associated with a significant increase in Na-K-ATPase expression to 164.4 ± 21.5% compared with controls ( P < 0.05), and OPC-31260 decreased Na-K-ATPase expression in both controls and CRF rats to 57.6 ± 9.5 and 105.3 ± 10.9%, respectively ( P < 0.05). On the other hand, OPC-31260 decreased rBSC-I expression in both controls and CRF rats to 60.8 ± 6.5 and 30.0 ± 6.9%, respectively ( P < 0.05), and was not influenced by CRF (95.7 ± 5.2%). We conclude that 1) endogenous VP modulated Na-K-ATPase and rBSC-1 in both controls and CRF; and 2) CRF was associated with increased activity and expression of the Na-K-ATPase in the outer medulla, in contrast to the unaltered expression of the rBSC-1. The data suggest that endogenous VP could participate in the regulation of electrolyte transport at the level of the outer medulla.


2019 ◽  
Vol 115 (12) ◽  
pp. 1732-1756 ◽  
Author(s):  
Francesca Fasolo ◽  
Karina Di Gregoli ◽  
Lars Maegdefessel ◽  
Jason L Johnson

Abstract Atherosclerosis underlies the predominant number of cardiovascular diseases and remains a leading cause of morbidity and mortality worldwide. The development, progression and formation of clinically relevant atherosclerotic plaques involves the interaction of distinct and over-lapping mechanisms which dictate the roles and actions of multiple resident and recruited cell types including endothelial cells, vascular smooth muscle cells, and monocyte/macrophages. The discovery of non-coding RNAs (ncRNAs) including microRNAs, long non-coding RNAs, and circular RNAs, and their identification as key mechanistic regulators of mRNA and protein expression has piqued interest in their potential contribution to atherosclerosis. Accruing evidence has revealed ncRNAs regulate pivotal cellular and molecular processes during all stages of atherosclerosis including cell invasion, growth, and survival; cellular uptake and efflux of lipids, expression and release of pro- and anti-inflammatory intermediaries, and proteolytic balance. The expression profile of ncRNAs within atherosclerotic lesions and the circulation have been determined with the aim of identifying individual or clusters of ncRNAs which may be viable therapeutic targets alongside deployment as biomarkers of atherosclerotic plaque progression. Consequently, numerous in vivo studies have been convened to determine the effects of moderating the function or expression of select ncRNAs in well-characterized animal models of atherosclerosis. Together, clinicopathological findings and studies in animal models have elucidated the multifaceted and frequently divergent effects ncRNAs impose both directly and indirectly on the formation and progression of atherosclerosis. From these findings’ potential novel therapeutic targets and strategies have been discovered which may pave the way for further translational studies and possibly taken forward for clinical application.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 694
Author(s):  
Solomon Abrha ◽  
Andrew Bartholomaeus ◽  
Wubshet Tesfaye ◽  
Jackson Thomas

Impetigo (school sores), a superficial skin infection commonly seen in children, is caused by the gram-positive bacteria Staphylococcus aureus and/or Streptococcus pyogenes. Antibiotic treatments, often topical, are used as the first-line therapy for impetigo. The efficacy of potential new antimicrobial compounds is first tested in in vitro studies and, if effective, followed by in vivo studies using animal models and/or humans. Animal models are critical means for investigating potential therapeutics and characterizing their safety profile prior to human trials. Although several reviews of animal models for skin infections have been published, there is a lack of a comprehensive review of animal models simulating impetigo for the selection of therapeutic drug candidates. This review critically examines the existing animal models for impetigo and their feasibility for testing the in vivo efficacy of topical treatments for impetigo and other superficial bacterial skin infections.


2020 ◽  
Vol 8 (8) ◽  
pp. 1103
Author(s):  
Jean-Nicolas Tournier ◽  
Clémence Rougeaux

Anthrax toxins are produced by Bacillus anthracis throughout infection and shape the physiopathogenesis of the disease. They are produced in low quantities but are highly efficient. They have thus been long ignored, but recent biochemical methods have improved our knowledge in animal models. This article reviews the various methods that have been used and how they could be applied to clinical diagnosis.


2011 ◽  
Vol 142 (6) ◽  
pp. 1585-1587 ◽  
Author(s):  
Mathieu Granier ◽  
Morten O. Jensen ◽  
Jesper L. Honge ◽  
Alain Bel ◽  
Philippe Menasché ◽  
...  

2001 ◽  
Vol 29 (2) ◽  
pp. 354-358 ◽  
Author(s):  
J. M. O'Connor

A number of studies (mainly in vitro and in vivo animal models) have examined the interaction of trace elements with DNA. Normal dietary levels of various trace elements are required to prevent the occurrence of oxidative damage, and deficiency may increase susceptibility. Conversely, overload of some trace elements, including copper and iron, has been demonstrated to result in adverse effects. However, under normal physiological conditions, such overloads are unlikely to occur.


Sign in / Sign up

Export Citation Format

Share Document