scholarly journals Wooden sticks for plaque streaking and microbiological inoculation might be more cost- effective, but is its large scale use feasible? Quality control methods and proof of concept

2022 ◽  
Vol 82 ◽  
Author(s):  
D. M. Castro e Silva ◽  
N. S. Adiwardana

Abstract The loop is a material classically used in the laboratory for the purpose of plate streaking and handling biological materials. However, metal loops techniques might be time consuming, considering the amount of time spent to guarantee its cooling process through each inoculation. Furthermore, plastic loops may also represent environmental issues during its production and discard process and can also represent higher costs for the laboratory. Thus, in situations of limited resources, even the simplest materials can be restricted due to logistical and budgetary issues, especially in developing countries. Inspired by demands like these, facing an occasional shortage of supply of laboratory plastic handles, we hereby present a quality control for sterilization methods and cost-effectiveness studies towards the use of wooden sticks in a Latin American country and we discuss the possibility of the large-scale use of this technique.

2020 ◽  
Vol 29 (1) ◽  
Author(s):  
Barbara Valera-Muros ◽  
Laura Panizo ◽  
Alvaro Rios ◽  
Pedro Merino-Gomez

Abstract Researchers in mobile technologies and services are currently requesting testbeds to validate their proposals in a realistic large-scale and controlled environment. Such demands are some times satisfied with private ad-hoc deployments in a given area of coverage. However, given national regulations related to the use of the spectrum and the cost of deployments, these solutions are not feasible for most researchers. In this paper, we introduce the architecture of the research infrastructure developed in the EuWireless project. EuWireless’ objective is to provide private networks that can be dynamically created as slices with different levels of configuration and control, as a cost-effective way to access large-scale testbeds with a licensed spectrum even in different countries. The paper focuses on the architecture of the Point of Presence, the key element in the EuWireless project, and how it will work in practice. We also present a proof of concept implementation that satisfies some of the design objectives and demonstrates the feasibility of the proposal.


1966 ◽  
Vol 05 (02) ◽  
pp. 67-74 ◽  
Author(s):  
W. I. Lourie ◽  
W. Haenszeland

Quality control of data collected in the United States by the Cancer End Results Program utilizing punchcards prepared by participating registries in accordance with a Uniform Punchcard Code is discussed. Existing arrangements decentralize responsibility for editing and related data processing to the local registries with centralization of tabulating and statistical services in the End Results Section, National Cancer Institute. The most recent deck of punchcards represented over 600,000 cancer patients; approximately 50,000 newly diagnosed cases are added annually.Mechanical editing and inspection of punchcards and field audits are the principal tools for quality control. Mechanical editing of the punchcards includes testing for blank entries and detection of in-admissable or inconsistent codes. Highly improbable codes are subjected to special scrutiny. Field audits include the drawing of a 1-10 percent random sample of punchcards submitted by a registry; the charts are .then reabstracted and recoded by a NCI staff member and differences between the punchcard and the results of independent review are noted.


Author(s):  
Yan Pan ◽  
Shining Li ◽  
Qianwu Chen ◽  
Nan Zhang ◽  
Tao Cheng ◽  
...  

Stimulated by the dramatical service demand in the logistics industry, logistics trucks employed in last-mile parcel delivery bring critical public concerns, such as heavy cost burden, traffic congestion and air pollution. Unmanned Aerial Vehicles (UAVs) are a promising alternative tool in last-mile delivery, which is however limited by insufficient flight range and load capacity. This paper presents an innovative energy-limited logistics UAV schedule approach using crowdsourced buses. Specifically, when one UAV delivers a parcel, it first lands on a crowdsourced social bus to parcel destination, gets recharged by the wireless recharger deployed on the bus, and then flies from the bus to the parcel destination. This novel approach not only increases the delivery range and load capacity of battery-limited UAVs, but is also much more cost-effective and environment-friendly than traditional methods. New challenges therefore emerge as the buses with spatiotemporal mobility become the bottleneck during delivery. By landing on buses, an Energy-Neutral Flight Principle and a delivery scheduling algorithm are proposed for the UAVs. Using the Energy-Neutral Flight Principle, each UAV can plan a flying path without depleting energy given buses with uncertain velocities. Besides, the delivery scheduling algorithm optimizes the delivery time and number of delivered parcels given warehouse location, logistics UAVs, parcel locations and buses. Comprehensive evaluations using a large-scale bus dataset demonstrate the superiority of the innovative logistics UAV schedule approach.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 899
Author(s):  
Djordje Mitrovic ◽  
Miguel Crespo Chacón ◽  
Aida Mérida García ◽  
Jorge García Morillo ◽  
Juan Antonio Rodríguez Diaz ◽  
...  

Studies have shown micro-hydropower (MHP) opportunities for energy recovery and CO2 reductions in the water sector. This paper conducts a large-scale assessment of this potential using a dataset amassed across six EU countries (Ireland, Northern Ireland, Scotland, Wales, Spain, and Portugal) for the drinking water, irrigation, and wastewater sectors. Extrapolating the collected data, the total annual MHP potential was estimated between 482.3 and 821.6 GWh, depending on the assumptions, divided among Ireland (15.5–32.2 GWh), Scotland (17.8–139.7 GWh), Northern Ireland (5.9–8.2 GWh), Wales (10.2–8.1 GWh), Spain (375.3–539.9 GWh), and Portugal (57.6–93.5 GWh) and distributed across the drinking water (43–67%), irrigation (51–30%), and wastewater (6–3%) sectors. The findings demonstrated reductions in energy consumption in water networks between 1.7 and 13.0%. Forty-five percent of the energy estimated from the analysed sites was associated with just 3% of their number, having a power output capacity >15 kW. This demonstrated that a significant proportion of energy could be exploited at a small number of sites, with a valuable contribution to net energy efficiency gains and CO2 emission reductions. This also demonstrates cost-effective, value-added, multi-country benefits to policy makers, establishing the case to incentivise MHP in water networks to help achieve the desired CO2 emissions reductions targets.


Author(s):  
Paul Oehlmann ◽  
Paul Osswald ◽  
Juan Camilo Blanco ◽  
Martin Friedrich ◽  
Dominik Rietzel ◽  
...  

AbstractWith industries pushing towards digitalized production, adaption to expectations and increasing requirements for modern applications, has brought additive manufacturing (AM) to the forefront of Industry 4.0. In fact, AM is a main accelerator for digital production with its possibilities in structural design, such as topology optimization, production flexibility, customization, product development, to name a few. Fused Filament Fabrication (FFF) is a widespread and practical tool for rapid prototyping that also demonstrates the importance of AM technologies through its accessibility to the general public by creating cost effective desktop solutions. An increasing integration of systems in an intelligent production environment also enables the generation of large-scale data to be used for process monitoring and process control. Deep learning as a form of artificial intelligence (AI) and more specifically, a method of machine learning (ML) is ideal for handling big data. This study uses a trained artificial neural network (ANN) model as a digital shadow to predict the force within the nozzle of an FFF printer using filament speed and nozzle temperatures as input data. After the ANN model was tested using data from a theoretical model it was implemented to predict the behavior using real-time printer data. For this purpose, an FFF printer was equipped with sensors that collect real time printer data during the printing process. The ANN model reflected the kinematics of melting and flow predicted by models currently available for various speeds of printing. The model allows for a deeper understanding of the influencing process parameters which ultimately results in the determination of the optimum combination of process speed and print quality.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
D Panatto ◽  
P Landa ◽  
D Amicizia ◽  
P L Lai ◽  
E Lecini ◽  
...  

Abstract Background Invasive disease due to Neisseria meningitidis (Nm) is a serious public health problem even in developed countries, owing to its high lethality rate (8-15%) and the invalidating sequelae suffered by many (up to 60%) survivors. As the microorganism is transmitted via the airborne route, the only available weapon in the fight against Nm invasive disease is vaccination. Our aim was to carry out an HTA to evaluate the costs and benefits of anti-meningococcal B (MenB) vaccination with Trumenba® in adolescents in Italy, while also considering the impact of this new vaccination strategy on organizational and ethics aspects. Methods A lifetime Markov model was developed. MenB vaccination with the two-dose schedule of Trumenba® in adolescents was compared with 'non-vaccination'. Two perspectives were considered: the National Health Service (NHS) and society. Three disease phases were defined: acute, post-acute and long-term. Epidemiological, economic and health utilities data were taken from Italian and international literature. The analysis was conducted by means of Microsoft Excel 2010®. Results Our study indicated that vaccinating adolescents (11th year of life) with Trumenba® was cost-effective with an ICER = € 7,912/QALY from the NHS perspective and € 7,758/QALY from the perspective of society. Vaccinating adolescents reduces the number of cases of disease due to meningococcus B in one of the periods of highest incidence of the disease, resulting in significant economic and health savings. Conclusions This is the first study to evaluate the overall impact of free MenB vaccination in adolescents both in Italy and in the international setting. Although cases of invasive disease due to meningococcus B are few, if the overall impact of the disease is adequately considered, it becomes clear that including anti-meningococcal B vaccination into the immunization program for adolescents is strongly recommended from the health and economic standpoints. Key messages Free, large-scale MenB vaccination is key to strengthening the global fight against invasive meningococcal disease. Anti-meningococcal B vaccination in adolescents is a cost-effective health opportunity.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 661
Author(s):  
Luigi Piazzi ◽  
Stefano Acunto ◽  
Francesca Frau ◽  
Fabrizio Atzori ◽  
Maria Francesca Cinti ◽  
...  

Seagrass planting techniques have shown to be an effective tool for restoring degraded meadows and ecosystem function. In the Mediterranean Sea, most restoration efforts have been addressed to the endemic seagrass Posidonia oceanica, but cost-benefit analyses have shown unpromising results. This study aimed at evaluating the effectiveness of environmental engineering techniques generally employed in terrestrial systems to restore the P. oceanica meadows: two different restoration efforts were considered, either exploring non-degradable mats or, for the first time, degradable mats. Both of them provided encouraging results, as the loss of transplanting plots was null or very low and the survival of cuttings stabilized to about 50%. Data collected are to be considered positive as the survived cuttings are enough to allow the future spread of the patches. The utilized techniques provided a cost-effective restoration tool likely affordable for large-scale projects, as the methods allowed to set up a wide bottom surface to restore in a relatively short time without any particular expensive device. Moreover, the mats, comparing with other anchoring methods, enhanced the colonization of other organisms such as macroalgae and sessile invertebrates, contributing to generate a natural habitat.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1646
Author(s):  
Jingya Xie ◽  
Wangcheng Ye ◽  
Linjie Zhou ◽  
Xuguang Guo ◽  
Xiaofei Zang ◽  
...  

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic–photonic integrated circuit.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 885
Author(s):  
Nicole Knoblauch ◽  
Peter Mechnich

Zirconium-Yttrium-co-doped ceria (Ce0.85Zr0.13Y0.02O1.99) compacts consisting of fibers with diameters in the range of 8–10 µm have been successfully prepared by direct infiltration of commercial YSZ fibers with a cerium oxide matrix and subsequent sintering. The resulting chemically homogeneous fiber-compacts are sinter-resistant up to 1923 K and retain a high porosity of around 58 vol% and a permeability of 1.6–3.3 × 10−10 m² at a pressure gradient of 100–500 kPa. The fiber-compacts show a high potential for the application in thermochemical redox cycling due its fast redox kinetics. The first evaluation of redox kinetics shows that the relaxation time of oxidation is five times faster than that of dense samples of the same composition. The improved gas exchange due to the high porosity also allows higher reduction rates, which enable higher hydrogen yields in thermochemical water-splitting redox cycles. The presented cost-effective fiber-compact preparation method is considered very promising for manufacturing large-scale functional components for solar-thermal high-temperature reactors.


Sign in / Sign up

Export Citation Format

Share Document