scholarly journals Morphophysiological changes of Acca sellowiana (Myrtaceae: Myrtoideae) saplings under shade gradient

2024 ◽  
Vol 84 ◽  
Author(s):  
L. R. Silva ◽  
A. P. C. Moura ◽  
B. V. Gil ◽  
A. Rohr ◽  
S. M. Z. Almeida ◽  
...  

Abstract Understanding morphological and physiological changes under different light conditions in native fruit species in juveniles’ stage is important, as it indicate the appropriate environment to achieve vigorous saplings. We aimed to verify growth and morphophysiological changes under shade gradient in feijoa (Acca sellowiana (O. Berg) Burret) to achieve good quality saplings adequate to improve cultivation in orchards. The saplings were grown for twenty-one-month under four shading treatments (0%, 30%, 50%, and 80%). Growth, photosynthetic pigments, gas exchanges, chlorophyll fluorescence, and leaf anatomy parameters were evaluated. Saplings under full sun and 30% shade had higher height and diameter growth and dry mass accumulation due to higher photosynthesis rate. As main acclimatization mechanisms in feijoa saplings under 80% shade were developed larger leaf area, reduced leaf blade thickness, and enhanced quantum yield of photosystem II. Even so, the net CO2 assimilation and the electron transport rate was lower and, consequently, there was a restriction on the growth and dry mass in saplings under deep shade. Therefore, to obtain higher quality feijoa saplings, we recommend that it be carried out in full sun or up to 30% shade, to maximize the sapling vigor in nurseries and, later, this light environment can also be used in orchards for favor growth and fruit production.

2019 ◽  
Vol 11 (2) ◽  
pp. 454
Author(s):  
Lucas B. de C. Rosmaninho ◽  
L. A. S. Dias ◽  
Martha F. da Silva ◽  
Aline de A. Vasconcelos ◽  
Wedisson O. Santos ◽  
...  

Crambe is a potential oilseed plant, which has been suggested for cultivation as a cover crop in the Brazilian Savanna where acidic soils predominate. Understanding of its performance in those conditions is essential. Thus, the objective of this study was to characterize the morphological and physiological changes in crambe plants when subjected to Al exposure at different dose levels. Plants were allocated to a nutrient solution with Al treatments at concentrations of 0.0, 0.1, 0.2, 0.3 and 0.4 mmol L-1. The following parameters were determined: length of root (LR) and shoot (LS), dry mass of roots (RDM) and shoots (SDM), Al uptake in plant tissues, leaf area (LA), absolute growth rate (AGR), grain yield (GY), net CO2 assimilation rate (A), stomatal conductance (gs), transpiration rate (E) and chlorophyll α fluorescence. The experimental design was completely randomized, consisting of five treatments with four replications. Regression analyses of growth parameters and mean comparative tests of physiological traits were performed. Roots concentrated approximately 40-fold more Al than shoots. There was a linear reduction in LS and LR with increasing doses of Al. For RDM, SDM, LA, AGR and GY, the reductions were similar and were better explained by quadratic models. Al damaged the photosynthetic apparatus of crambe plants, demonstrated by a significant reduction in the values of Fv/Fm (estimation of photosynthetic efficiency), A, gs and E, compared to the control. Al negatively affected growth parameters as well as the photosynthetic response of crambe plants, resulting in a substantial decrease in its grain yield.


Author(s):  
Amanda Cristina Esteves Amaro ◽  
Essione Ribeiro Souza ◽  
Laíse Sousa Santos ◽  
Daniel Baron ◽  
Elizabeth Orika Ono ◽  
...  

We hypothesized that phytohormones and essential mineral nutrients influence the duration of leaf photosynthetic activity, fruit production and quality. We used a randomized block design, with four treatments and six replicates. Two commercial products were studied: Stimulate® (Stim), which is composed of a mixture of 0.009% cytokinin [N6-furfuryladenine or kinetin (Kt)], 0.005% auxin [4-indole-3-butyric acid (IBA)], and 0.005% gibberellin [gibberellic acid (GA3)], and Hold® (CoMo), which is composed of 2% cobalt and 3% molybdenum. These products were applied alone or in combination at different concentrations as follows: T1 - control, T2 - 1.8 L ha-1 Stim, T3 - 1.8 L ha-1 Stim + 1.0 L ha-1 CoMo, and T4 - 1.8 L h-1 Stim + 1.5 L ha-1 CoMo. The treatments were applied via foliar spraying at three phases: the inflorescence primordial stage (19 days after pruning [DAP]), the point at which the berries were 6 to 8 mm in diameter (49 DAP), and the initiation of berry elongation (56 DAP). We revealed that in semiarid conditions, the grapevines were characterized by evergreen leaves (do not lose their leaves) that maintained their photosynthetic capacity throughout their lifecycles (133 days after sprouting). The application of Stim alone (T2) yielded the maximal net CO2 assimilation rates and increased the carboxylation efficiencies, which indicated that this treatment might improve the photosynthetic output. These effects led to increases in the average mass, total length and width of the clusters per plant and decreased acidity level. Thus, we recommend the application of T2 for grapevines.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 560
Author(s):  
Luigi Formisano ◽  
Michele Ciriello ◽  
Christophe El-Nakhel ◽  
Marios C. Kyriacou ◽  
Youssef Rouphael

In the Italian culinary tradition, young and tender leaves of Genovese basil (Ocimum basilicum L.) are used to prepare pesto sauce, a tasty condiment that attracts the interest of the food processing industry. Like other leafy or aromatic vegetables, basil is harvested more than once during the crop cycle to maximize yield. However, the mechanical stress induced by successive cuts can affect crucial parameters associated with pesto processing (leaf/stem ratio, stem diameter, and dry matter). Our research accordingly aimed to evaluate the impact of successive harvests on three field-grown Genovese basil cultivars (“Aroma 2”, “Eleonora” and “Italiano Classico”) in terms of production, physiological behavior, and technological parameters. Between the first and second harvest, marketable fresh yield and shoot dry biomass increased by 148.4% and 172.9%, respectively; by contrast, the leaf-to-stem ratio decreased by 22.5%, while the dry matter content was unchanged. The increased fresh yield and shoot dry biomass at the second harvest derived from improved photosynthetic efficiency, which enabled higher net CO2 assimilation, Fv/Fm and transpiration as well as reduced stomatal resistance. Our findings suggest that, under the Mediterranean environment, “Italiano Classico” carries superior productive performance and optimal technological characteristics in line with industrial requirements. These promising results warrant further investigation of the impact successive harvests may have on the qualitative components of high-yielding basil genotypes with respect to consumer expectations of the final product.


2021 ◽  
Vol 22 (9) ◽  
pp. 4663
Author(s):  
Aleksandra Orzechowska ◽  
Martin Trtílek ◽  
Krzysztof Michał Tokarz ◽  
Renata Szymańska ◽  
Ewa Niewiadomska ◽  
...  

A non-destructive thermal imaging method was used to study the stomatal response of salt-treated Arabidopsis thaliana plants to excessive light. The plants were exposed to different levels of salt concentrations (0, 75, 150, and 220 mM NaCl). Time-dependent thermograms showed the changes in the temperature distribution over the lamina and provided new insights into the acute light-induced temporary response of Arabidopsis under short-term salinity. The initial response of plants, which was associated with stomatal aperture, revealed an exponential growth in temperature kinetics. Using a single-exponential function, we estimated the time constants of thermal courses of plants exposed to acute high light. The saline-induced impairment in stomatal movement caused the reduced stomatal conductance and transpiration rate. Limited transpiration of NaCl-treated plants resulted in an increased rosette temperature and decreased thermal time constants as compared to the controls. The net CO2 assimilation rate decreased for plants exposed to 220 mM NaCl; in the case of 75 mM NaCl treatment, an increase was observed. A significant decline in the maximal quantum yield of photosystem II under excessive light was noticeable for the control and NaCl-treated plants. This study provides evidence that thermal imaging as a highly sensitive technique may be useful for analyzing the stomatal aperture and movement under dynamic environmental conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 702
Author(s):  
Anastasios I. Darras ◽  
Panagiotis J. Skouras ◽  
Panagiotis Assimomitis ◽  
Chara Labropoulou ◽  
George J. Stathas

UV-C irradiation is known to enhance plant resistance against insect pests. In the present study, we evaluated the effects of low doses of UV-C on Macrosiphum rosae infesting greenhouse rose (Rosa x hybrida) plants. The application of 2.5-kJ/m2 UV-C irradiation on rose leaves before infestation induced anti-herbivore resistance and negatively affected the aphid fecundity. No eggs and first instar nymphs were recorded on irradiated leaves, whereas an average of 4.3 and 2.7 eggs and 6.7 and 14 first instars were recorded on vars. “Etoile Brilante” and “Arlen Francis” untreated leaves, respectively. UV-C irradiation reduced the aphid population from naturally infested rose plants by up to 58%. In a greenhouse pot trial (GPT) in 2019, UV-C irradiation minimised the initial aphid population six hours after treatment. UV-C elicited host resistance and, also, helped in aphid repulsion without killing the adult individuals. UV-C did not affect the physiological responses of rose plants. The net CO2 assimilation of the UV-C irradiated plants ranged between 10.55 and 15.21 μmol/m2. sec for “Arlen Francis” and between 10.51 and 13.75 μmol/m2. sec for “Etoile Brilante” plants. These values, with only a few exceptions, were similar to those recorded to the untreated plants.


2013 ◽  
Vol 48 (9) ◽  
pp. 1210-1219 ◽  
Author(s):  
Muhammad Iqbal ◽  
Muhammad Ashraf

The objective of this work was to assess the regulatory effects of auxin-priming on gas exchange and hormonal homeostasis in spring wheat subjected to saline conditions. Seeds of MH-97 (salt-intolerant) and Inqlab-91 (salt-tolerant) cultivars were subjected to 11 priming treatments (three hormones x three concentrations + two controls) and evaluated under saline (15 dS m-1) and nonsaline (2.84 dS m-1) conditions. The priming treatments consisted of: 5.71, 8.56, and 11.42 × 10-4 mol L-1 indoleacetic acid; 4.92, 7.38, and 9.84 × 10-4 mol L-1 indolebutyric acid; 4.89, 7.34, and 9.79 × 10-4 mol L-1 tryptophan; and a control with hydroprimed seeds. A negative control with nonprimed seeds was also evaluated. All priming agents diminished the effects of salinity on endogenous abscisic acid concentration in the salt-intolerant cultivar. Grain yield was positively correlated with net CO2 assimilation rate and endogenous indoleacetic acid concentration, and it was negatively correlated with abscisic acid and free polyamine concentrations. In general, the priming treatment with tryptophan at 4.89 × 10-4 mol L-1 was the most effective in minimizing yield losses and reductions in net CO2 assimilation rate, under salt stress conditions. Hormonal homeostasis increases net CO2 assimilation rate and confers tolerance to salinity on spring wheat.


2006 ◽  
Vol 18 (3) ◽  
pp. 407-411 ◽  
Author(s):  
Mauro G. dos Santos ◽  
Rafael V. Ribeiro ◽  
Marcelo G. Teixeira ◽  
Ricardo F. de Oliveira ◽  
Carlos Pimentel

Two common bean cultivars were grown in pots under greenhouse conditions. Plants were submitted to a foliar Pi spray two days before suspending irrigation, what enhanced net CO2 assimilation rate of Ouro Negro cultivar but did not change significantly the photosynthesis of Carioca cultivar under both water deficit and rehydration periods. The results revealed that a foliar Pi spray induced an up-regulation of photosynthesis in common bean under mild water deficit, with this effect being genotype-dependent.


Sign in / Sign up

Export Citation Format

Share Document