scholarly journals Conservation of minimally processed apples using edible coatings made of turnip extract and xanthan gum

2016 ◽  
Vol 19 (0) ◽  
Author(s):  
Caroline Dellinghausen Borges ◽  
Carla Rosane Barboza Mendonça ◽  
Daiane Nogueira ◽  
Ederson Schwenske Hartwig ◽  
Josiane Kuhn Rutz

Summary The objective of this study was to evaluate the potential of turnip extract and xanthan gum in the conservation of minimally processed apples. The apples were washed, sanitized with sodium hypochlorite (200 ppm) for 15 minutes, peeled, and cut into eight pieces prior to being subjected to one of the following treatments in aqueous solution: A – water (control); B – turnip extract; C – turnip extract and CaCl2; D – xanthan gum, CaCl2 and glycerol; E – turnip extract, xanthan gum, CaCl2, and glycerol. Subsequently, the freshly cut apples were dried under ventilation on nylon screens to ensure drying of the coatings, and then packed in polystyrene trays, covered with polyvinylchloride films and stored at 4 ± 1 ° C for 13 days. The following parameters were evaluated: mass loss, firmness, colouration, pH value, soluble solids, and peroxidase/polyphenoloxidase activities. The edible coatings were found to be ineffective with respect to controlling mass loss, but the minimally processed apples coated with turnip extract maintained their initial levels of colouration, firmness and pH value. A considerable increase in peroxidase activity was registered for apples treated with turnip extract, suggesting that this effect may also be responsible for the reduction in browning. No advantage could be observed for the simultaneous presence of turnip extract and xanthan gum or calcium chloride. The turnip extract may represent an interesting alternative for applications to minimally processed apples, especially as it is a natural product, easily obtained, cost effective and contributes to the nutritional quality (e.g. as a source of calcium ions).

2019 ◽  
Vol 121 (7) ◽  
pp. 1592-1604 ◽  
Author(s):  
Sandriane Pizato ◽  
Raquel Costa Chevalier ◽  
Marcela Félix Dos Santos ◽  
Tailine Saturnino Da Costa ◽  
Rosalinda Arévalo Pinedo ◽  
...  

Purpose The purpose of this paper is to evaluate the shelf-life of minimally processed pineapple when subjected to the use of different edible coatings. Design/methodology/approach The pineapples were peeled and cut into cubes. The gums were prepared by dissolving them in distilled water and then heated to total dissolution. After calcium chloride, citric acid and ascorbic acid and glycerol were added in the solutions. The pieces of pineapple were completely submerged in the respective solutions and then drained. Four treatments were obtained, namely: T1 – control treatment (pineapple without coating); T2 – pectin; T3 – tara; T4 – xanthan. The cubes were stored in PET by 12 days at 4±1°C. Analyzes were carried out of mass loss, pH, titratable acidity, soluble solids, microbiological and sensory analysis. Findings It was possible to observe that the use of evaluated coatings was efficient to maintain the conservation of minimally processed pineapple in all analyzes, when compared with the control sample. The treatment with tara gum showed the best results to those obtained by the other studied gums. Practical implications The study may help small-scale establishments to increase the shelf-life of minimally processed pineapple. Originality/value Tara gum reduced the mass loss, delayed the microbial growth and maintained the sensorial quality of minimally processed pineapples for a longer time.


2017 ◽  
Vol 8 (4) ◽  
pp. 128
Author(s):  
Anelise Christ Ribeiro ◽  
Rui Carlos Zambiazi ◽  
Leonor Almeida de Souza Soares

The objective of this study was to evaluate the influence of protein globulin-based films and with addition of phenolic compounds extracted from Spirulina sp. LEB-18 in the conservation of tomatoes "Sweet Grape". For this, the tomatoes were immersed for one min in edible coatings, the first based on phenolic extracts derived from Spirulina sp. LEB-18 and ovalbumin (extracted from eggwhite), and the second based just on ovalbumin, beyond the control sample with only water immersion. Tests of pH, of titratable acidity, of color, of soluble solids, of mass loss and visual analysis were taken every 96 h during the 20 day period. The results show that the coating made with phenolic compounds increased the shelf life of tomatoes type "sweet grape".


2019 ◽  
Vol 57 (2) ◽  
pp. 230-237 ◽  
Author(s):  
Yulian Tumbarski ◽  
Radosveta Nikolova ◽  
Nadezhda Petkova ◽  
Ivan Ivanov ◽  
Anna Lante

Bacteriocins are a large group of antimicrobial compounds that are synthesized by representatives of the genus Bacillus and lactic acid bacteria. They are used extensively in the food industry as biopreservatives. Incorporated in the composition of edible coatings, bacteriocins can reduce microbial growth and decay incidence in perishable fruits, thus improving product shelf-life and commercial appearance. The present study aims to investigate the effect of edible coatings of 0.5 % carboxymethyl cellulose (CMC) enriched with a purified bacteriocin from Bacillus methylotrophicus BM47 on the shelf-life extension of fresh strawberries. During storage at 4 °C and 75 % relative humidity for 16 days, the measurements of mass loss, decay percentage, total soluble solids (TSS), titratable acidity (TA), pH, organic acids, total phenolic and anthocyanin contents and antioxidant activity were made. The results demonstrate that the application of edible coatings with 0.5 % CMC and 0.5 % CMC with bacteriocin (CMC+B) led to a significant decrease of mass loss in the treated strawberries compared to the uncoated fruit. After the 8th day of storage, significant reductions in decay percentage along with the absence of fungal growth in CMC+B-coated fruit were observed in comparison with the CMC-coated and control strawberries. During the second half of the storage period, CMC and CMC+B treatments reduced TSS amount in the coated fruit compared to the control, but did not affect the increase of TA and decrease of pH values that are normally associated with postharvest changes. The CMC and CMC+B coatings did not prevent the decrease of ascorbic acid, and total phenolic and anthocyanin contents during cold storage. The application of CMC and CMC+B coatings had a significant inhibitory effect on decreasing the antioxidant activity throughout the storage period and maintained the antioxidant levels in both treatments close to the initial value of 76.8 mmol Trolox equivalents per 100 g of fresh mass.


2020 ◽  
Vol 41 (6supl2) ◽  
pp. 3093-3106
Author(s):  
Michele Krüger Vaz Moreira ◽  
◽  
Rufino Fernando Flores Cantillano ◽  
Eliezer Avila Gandra ◽  
Carla Rosane Barboza Mendonça ◽  
...  

The pinhão shows high nutritional value; however, its consumption is still low owing to the long cooking time required because it is hard to peel, and it is susceptible to sprouting, larval infestation, and fungal contamination. Thus, this study aimed to evaluate the storage stability of minimally processed pinhão by using edible coatings with antimicrobial characteristics. The pinhões were subjected to minimal processing with the following treatments: Treatment A - control; Treatment B - chitosan; Treatment C - xanthan gum and clove essential oil. After drying, they were packed in polyethylene terephthalate and stored at 4 °C for nine days. The pinhões were analyzed for mass loss, total acidity, reducing sugars, vitamin C, color, firmness, respiratory rate, sensory characteristics, and microbial growth. In general, no differences were observed in mass loss, reducing sugars, and oxygen concentrations of the pinhões after any treatment. In addition, we observed a reduction in acidity and carbon dioxide concentrations, maintenance of color parameters, and the absence of growth of thermotolerant coliforms and coagulase-positive Staphylococcus. Although the minimal processing did not increase the respiratory rate of pinhões, it did not stop the process of seed maturation. Of the coatings evaluated, chitosan coating of the pinhões was associated with a higher content of vitamin C as well as a lower number of psychrotrophic microorganisms. The coatings did not influence the taste and aroma of the minimally processed pinhões.


2019 ◽  
Vol 37 (3) ◽  
pp. 317-322 ◽  
Author(s):  
Alex López-Córdoba ◽  
Andrea Aldana-Usme

The demand for healthy and ready-to-eat products, such asfreshly-harvested fruits, has been growing steadily over the years. However, these products are very susceptible to spoilage and have a short shelf-life. In this research, edible coatings based on sodium alginate and its blends with ascorbic acid (a natural antioxidant and anti-browning agent) were applied on fresh-cut pineapple samples, and the changes in their physicochemical properties were monitored during 10 d of storage at 4ºC. Initially, the surface of the coated fruits was brighter and statistically significant differences were not found between uncoated and coated samples (P<0.05); similar values were obtained in the parameters of soluble solids (~11 ºBrix), pH (~3.74) and titratable acidity (~0.64%). During storage, coated samples were more protected against changes in appearance compared to uncoated fresh-cut pineapple samples. The current results will be beneficial for further research that focuses on the preservation of minimally processed fruits such as pineapple.


2005 ◽  
Vol 48 (4) ◽  
pp. 503-510 ◽  
Author(s):  
Maria Carolina Dario Vitti ◽  
Liane Kazuko Yamamoto ◽  
Fabiana Fumi Sasaki ◽  
Juan Saavedra del Aguila ◽  
Ricardo Alfredo Kluge ◽  
...  

The present work was carried out with the objective to determine the effect of different storage temperature on the quality of beet root minimally processed. Respiratory activity and mass loss were higher in the storage at 15ºC. No significant differences in color, total soluble solids, betacyanin and betaxanthin were observed among treatments. Based on the results obtained, the storage at 0ºC was recommended to storage beet root minimally processed and that 10 and 15ºC drastically reduced the quality of minimally processed beet roots during storage.


Nativa ◽  
2018 ◽  
Vol 6 (6) ◽  
pp. 563
Author(s):  
Sonara De França Sousa ◽  
Regilane Marques Feitosa ◽  
Rossana Maria Feitosa de Figueirêdo

Objetivou-se avaliar o efeito de diferentes revestimentos sob a conservação da banana cv. prata armazenada em temperatura ambiente. As bananas foram adquiridas em estágio verde de maturação, sendo posteriormente higienizadas e revestidas com as soluções de revestimentos obtidas a partir da gelatina, pectina e goma xantana, a 1%. As bananas revestidas e a amostra controle, foram armazenadas por 9 dias, quantificadas a partir do tempo 0 quanto aos atributos: perda de massa, cor, acidez, teor de água, sólidos solúveis e pH. De acordo com os resultados obtidos, os tratamentos com gelatina e pectina apresentaram crescimento fúngico ao final do armazenamento. A perda e massa foi maior nas bananas controle, os valores de L*, a* e b*, ao final do armazenamento, indicaram uma coloração escura com tendência ao vermelho-amarelado. A acidez das amostras aumentou e os valores de pH diminuíram e o teor de sólidos solúveis apresentaram acréscimos durante o período de armazenamento. Dentre as soluções de revestimento utilizadas para este estudo, a goma xantana apresentou os melhores resultados, visto que foi a mais eficiente contra a perda de massa e apresentou as menores variações referentes à coloração das bananas.Palavras-chave: goma xantana, perda de massa, armazenamento. APPLICATION OF DIFFERENT COATING IN BANANA POST-HARVEST CONSERVATION CV. SILVER ABSTRACT: The objective of the present work was evaluate the effect of different coatings under banana cv. stored at environment temperature. The bananas were obtained at the green maturation stage, sanitized and coated with the solutions of biopolymers from gelatin, pectin and xanthan gum at 1%. The coated bananas and the control sample were stored for 9 days, quantified from time 0 for the following parameters: loss of mass, color, titratable acidity, water content, soluble solids and pH. According to the results obtained, treatments with gelatin and pectin showed fungal growth at the end of storage. The loss and mass was higher in the control bananas, the values of L*, a* and b*, at the end of the storage, indicating a dark color with tendency to reddish-yellow. The acidity of the samples increased and the pH values decreased, and soluble solids content show presented increases during the storage period. Among the coating solutions used for this study, xanthan gum presented the best results, since it was the most efficient against mass loss and showed the smallest variations regarding the color of bananas.Keywords: xanthan gum, mass loss, storage.


Respuestas ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 84-91
Author(s):  
Saúl David Buelvas Caro ◽  
Liliana Polo Corrales ◽  
Elvis Judith Hernandez Ramos

In this research the effect of edible coatings based on aloe vera and cassava starch on the physicochemical properties and the kinetic parameters of degradation of ascorbic acid (AA) in pineapple minimally processed during 16 days of storage at 4 ° C was evaluated. Five treatments (T1, T2, T3, T4 and T5) were tested, pineapple “honey gold” with coating solutions of different aloe vera / starch concentrations (100/0, 75/25, 50/50, 25/75 and 0/100 respectively), and a control treatment (T6 ) that corresponds to fruit without coating. The coatings were carried out by immersing the fruit previously processed for 1 minute. The results show that the treatment with the best pH values, titratable acidity (AT) and maturity index (IM) was T3 (pH: 3.61, AT: 0.0480, IM: 2.915), in terms of moisture and soluble solids (SS) the T1 treatment (% Moisture: 81.725) and T4 (SS: 11.19) showed the most optimal values. The model that best described the degradative behavior of AA is zero order, being the T4 treatment the most adequate to preserve vitamin C with a value (k: 0.781), a half-life (t ½: 28 days) and a decimal reduction time (D: 93 days).


2019 ◽  
Vol 65 (1) ◽  
Author(s):  
Boshi Zhao ◽  
Zhiming Yu ◽  
Yang Zhang ◽  
Chusheng Qi

AbstractBlue staining on rubberwood (Hevea brasiliensis) is a common kind of defect. There currently exists much research focused on the prevention and control of blue staining. However, little research has been concentrated on the utilization of blue staining for green dyeing. The research conveyed in this paper primarily used Lasiodiplodia theobromae to dye rubberwood, and used scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), and fourier transform infrared spectrometer (FTIR) to analyze the commission internationale eclairage (CIE) L*a*b* value of color, the contact angle, the pH value, 24-h water absorption, mass loss ratio, and compressive strength in increments between 5 and 40 days. The results found that the color of rubberwood became darker and more uniform, and that the surface dyed with fungi can reach a super-hydrophobic state. With the increase of time, the pH value of rubberwood changed from acidic to alkaline. Furthermore, hyphae entered the wood mainly through vessels for their large pore diameter, and reduced water absorption. Mass loss ratio increased gradually between 5 and 40 days. The research in this paper concludes that the microorganism was an effective method of wood dyeing, and lays a foundation for further research.


Sign in / Sign up

Export Citation Format

Share Document