scholarly journals SEM studies on the leaf indumentum of six Melastomataceae species from Brazilian Cerrado

Rodriguésia ◽  
2011 ◽  
Vol 62 (1) ◽  
pp. 203-212 ◽  
Author(s):  
Camilla Rozindo Dias Milanez ◽  
Silvia Rodrigues Machado

Abstract The wide diversity of their trichomes, which vary from simple unicellular to very complex structures, is a remarkable characteristic in Melastomataceae. This paper characterizes the leaf indumentum of Miconia albicans (Sw.) Triana, M. chamissois Naudin, M. fallax DC., M. ligustroides (DC.) Naudin, Microlepis oleaefolia (DC.) Triana and Rhynchanthera dichotoma DC., typical species from Brazilian cerrado. Samples collected from the median third of young and mature leaf blades were processed following the usual scanning electron microscopy techniques (SEM). We observed ten morphological types of trichomes and four of emergences. With five different types, four of which are reported for the first time, Rhynchanthera dichotoma is the species that presents the most diverse indumenta. A mixed type of trichome formed by a glandular and a branched non-glandular portion called "lateral-gland" was observed in M. ligustroides. Such non-glandular portion presents different degrees of development. A correlation is suggested between the stage of development of the non-glandular portion and the exposition to light of these "lateral gland" on young leaves.

Microscopy ◽  
2017 ◽  
Vol 66 (6) ◽  
pp. 414-423
Author(s):  
Monalisa Mishra ◽  
Ashutosh Choudhury ◽  
P Sagar Achary ◽  
Harekrushna Sahoo

Abstract Butterflies wings possess different types of scales to perform diverse functions. Each scale has many nano and microstructures, which interferes with light, resulting in unique coloration for each butterfly. Besides coloration, the arrangement of scales further helps in giving better survivability. Thus, analysis of wing pattern provides an overall idea about adaptation and activity of the animal. The current study deciphers the structure and composition of a wing of a pierid butterfly Catopsilia pomona, which remains active at 42°C at which temperature all other butterflies face a tougher task for existence. In order to know the relation between survivability and adaptation in the wing, we have investigated the structural and physical composition of the wing of C. pomona under optical spectroscopy (absorption, reflectance and transmittance) along with microscopy techniques (optical and scanning electron microscopy), which are not described in earlier studies. The current findings reveal unique structural arrangement within scales to provide the best fit to the animal in variable temperature.


2019 ◽  
Vol 57 (6) ◽  
pp. 581-585
Author(s):  
Johnica Jo Morrow ◽  
Christian Elowsky

Confocal laser scanning microscopy (CLSM) was used to examine archaeoparasitological specimens from coprolites associated with La Cueva de los Muertos Chiquitos (CMC) located near present-day Durango, Mexico. The eggs for 4 different types of parasites recovered from CMC coprolites were imaged using CLSM to assist with identification efforts. While some of the parasite eggs recovered from CMC coprolites were readily identified using standard light microscopy (LM), CLSM provided useful data for more challenging identifications by highlighting subtle morphological features and enhancing visualization of parasite egg anatomy. While other advanced microscopy techniques, such as scanning electron microscopy (SEM), may also detect cryptic identifying characters, CLSM is less destructive to the specimens. Utilizing CLSM allows for subsequent examinations, such as molecular analyses, that cannot be performed following SEM sample preparation and imaging. Furthermore, CLSM detects intrinsic autofluorescence molecules, making improved identification independent of resource and time-intensive protocols. These aspects of CLSM make it an excellent method for assisting in taxonomic identification and for acquiring more detailed images of archaeoparasitological specimens.


2010 ◽  
Vol 17 (1) ◽  
pp. 34-48 ◽  
Author(s):  
Carol Kiely ◽  
Gary Greenberg ◽  
Christopher J. Kiely

AbstractComplementary state-of-the-art optical, scanning electron, and X-ray microscopy techniques have been used to study the morphology of Apollo 11 lunar soil particles (10084-47). The combination of innovative lighting geometries with image processing of a through focal series of images has allowed us to obtain a unique collection of high-resolution light micrographs of these fascinating particles. Scanning electron microscopy (SEM) stereo-pair imaging has been exploited to illustrate some of the unique morphological properties of lunar regolith. In addition, for the first time, X-ray micrographs with submicron resolution have been taken of individual particles using X-ray ultramicroscopy (XuM). This SEM-based technique lends itself readily to the imaging of pores, cracks, and inclusions and allows the internal structure of an entire particle to be viewed. Rotational SEM and XuM movies have also been constructed from a series of images collected at sequential angles through 360°. These offer a new and insightful view of these complex particles providing size, shape, and spatial information on many of their internal features.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
S.C. Speller ◽  
T. Mousavi ◽  
P. Dudin

AbstractInhomogeneity and phase separation in unconventional superconducting materials is a topic of increasing interest, as the competition between phases with different types of ordering is thought to play an important role in the emergence of the high temperature superconducting state. A wide range of experimental techniques are available for investigating the crystallography of these complex materials, however the majority are bulk probes. Here we briefly review some spatially resolved techniques that are being used to investigate phase separation in ironbased superconductors, with a focus on analytic Scanning Electron Microscopy techniques and synchrotron-based Photoelectron Microscopy.


Author(s):  
J. R. Millette ◽  
R. S. Brown

The United States Environmental Protection Agency (EPA) has labeled as “friable” those building materials that are likely to readily release fibers. Friable materials when dry, can easily be crumbled, pulverized, or reduced to powder using hand pressure. Other asbestos containing building materials (ACBM) where the asbestos fibers are in a matrix of cement or bituminous or resinous binders are considered non-friable. However, when subjected to sanding, grinding, cutting or other forms of abrasion, these non-friable materials are to be treated as friable asbestos material. There has been a hypothesis that all raw asbestos fibers are encapsulated in solvents and binders and are not released as individual fibers if the material is cut or abraded. Examination of a number of different types of non-friable materials under the SEM show that after cutting or abrasion, tuffs or bundles of fibers are evident on the surfaces of the materials. When these tuffs or bundles are examined, they are shown to contain asbestos fibers which are free from binder material. These free fibers may be released into the air upon further cutting or abrasion.


2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


Author(s):  
Mamaeva S.N. ◽  
Vinokurov R.R. ◽  
Munkhalova Ya.A. ◽  
Dyakonova D.P. ◽  
Platonova V.A. ◽  
...  

Currently, due to the intensive development of high-tech science-intensive medical and research devices, more and more attention is paid to the development of diagnostics of rare and difficult to diagnose diseases. It is known that among numerous nephropathies, hematuria may be the only symptom of kidney and urinary tract diseases, which complicates their diagnosis and treatment. In order to develop new approaches for the diagnosis of nephropathies, the authors have been studying the morphology of red blood cells in the blood and urine of children and adults using a scanning electron microscope for several years. The paper presents the results of studies of children with various kidney diseases, including IgA-nephropathy, and chronic glomerulonephritis. Scanning electron microscopy was used for the first time to detect nanoparticles on the surface of red blood cells, the size of which is comparable to the size of viruses, which became the basis for one of the authors ' assumptions, namely, the possible transport of certain types of viruses by red blood cells. Thus, some kidney diseases could be considered virus-associated. This paper presents for the first time the results of determining the glomerular filtration rate of both kidneys separately in the study of separate kidney function and of the study of urine smears obtained during catheterization of the ureters in patients with hydronephrosis of one of the kidneys by scanning electron microscopy. As in previous studies, nanoparticles were found on the surface of red blood cells, which leads to the conclusion about the possible viral nature of the disease of the considered patient. In addition, smear images obtained using a microscope showed a significant difference in the elements of the right and left kidneys urine, which did not contradict the data on the study of glomerular filtration rate. According to the authors, the capabilities of the scanning electron microscope can be applied in fundamental research of kidney diseases at the cellular and molecular levels, forming new ideas about their origin, as well as on the basis of which new methods of non-invasive diagnostics can be built.


Author(s):  
Y. N. Hua ◽  
Z. R. Guo ◽  
L. H. An ◽  
Shailesh Redkar

Abstract In this paper, some low yield cases in Flat ROM device (0.45 and 0.6 µm) were investigated. To find killer defects and particle contamination, KLA, bitmap and emission microscopy techniques were used in fault isolation. Reactive ion etching (RIE) and chemical delayering, 155 Wright Etch, BN+ Etch and scanning electron microscope (SEM) were used for identification and inspection of defects. In addition, energy-dispersive X-ray microanalysis (EDX) was used to determine the composition of the particle or contamination. During failure analysis, seven kinds of killer defects and three killer particles were found in Flat ROM devices. The possible root causes, mechanisms and elimination solutions of these killer defects/particles were also discussed.


Author(s):  
Vladimir A. Lapin ◽  
Erken S. Aldakhov ◽  
S. D. Aldakhov ◽  
A. B. Ali

For the first time in Almaty full passport of apartment stock of multiapartment building was carried out. The structure of the housing stock was revealed with the allocation of groups of buildings according to structural solutions and assessment of their seismic resistance. Based on the results of certification, quantitative estimates of failure probability values for different types of buildings were obtained. Formulas for estimation of quantitative value of seismic risk are obtained. The number of deaths in the estimated zem-shakes was estimated. The results of the assessments will be used for practical recommendations to reduce risk and expected losses in possible earthquakes.


Author(s):  
Jack Corbett ◽  
Wouter Veenendaal

Chapter 1 introduces the main arguments of the book; outlines the approach, method, and data; defines key terms; and provides a chapter outline. Global theories of democratization have systematically excluded small states, which make up roughly 20 per cent of countries. These cases debunk mainstream theories of why democratization succeeds or fails. This book brings small states into the comparative politics fold for the first time. It is organized thematically, with each chapter tackling one of the main theories from the democratization literature. Different types of data are examined—case studies and other documentary evidence, interviews and observation. Following an abductive approach, in addition to examining the veracity of existing theory, each chapter is also used to build an explanation of how democracy is practiced in small states. Specifically, we highlight how small state politics is shaped by personalization and informal politics, rather than formal institutional design.


Sign in / Sign up

Export Citation Format

Share Document