scholarly journals Cryptococcus neoformans isolation from swallow (Hirundo rustica) excreta in Iran

2011 ◽  
Vol 53 (3) ◽  
pp. 125-127 ◽  
Author(s):  
Mohammad T. Hedayati ◽  
Sabah Mayahi ◽  
Mahdi Fakhar ◽  
Tahereh Shokohi ◽  
Mohammad Majidi

Cryptococcus neoformans is an encapsulated yeast that can cause cryptococcosis, a life-threatening infection that mainly occurs in immunocompromised patients. The major environmental sources of C. neoformans have been shown to be soil contaminated with avian droppings. In the present study, we evaluated the isolation of C. neoformans from swallow (Hirundo rustica) excreta in two northern cities of Iran. Ninety-seven swallow droppings were evaluated and 498 yeast-like colonies were isolated and identified as Rhodotorula spp. (62.8%), Candida spp. (28.5%)and C. neoformans (8.7%). Cryptococcus neoformans was isolated from 5/97 (5.2%) of collected samples. Min-Max colony forming units (CFU) per one gram for the positive samples were 3-10 C. neoformans colonies. The total mean CFU per one gram for the positive samples was 4.8. The results of this study demonstrate that excreta of swallow may harbor different species of potentially pathogenic yeasts, mainly C. neoformans, and may be capable of disseminating these fungi in the environment.

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Nicolas Papon ◽  
Gustavo H. Goldman

ABSTRACT Cryptococcus neoformans is a basidiomycetous yeast responsible for hundreds of thousands of deaths a year and is particularly threatening in immunocompromised patients. There are few families of antifungals that are available to fight fungal infections, and the unique efficient treatment for the most deadly cerebral forms of cryptococcosis is based on a combination of 5-fluorocytosine and amphotericin B. The toxicities of both compounds are elevated, and more therapeutic options are urgently needed for better management of life-threatening cryptococcosis. The newest class of antifungals, i.e., echinocandins, has initially led to great hope. Unfortunately, C. neoformans was rapidly confirmed to be naturally resistant to these molecules, notably caspofungin. In this respect, we discuss here the recent key findings of the Panepinto research group published in mBio (M. C. Kalem et al., mBio 12:e03225-20, 2021, https://doi:10.1128/mBio.03225-20) that provide an unprecedented view of how C. neoformans regulates caspofungin resistance through a complex posttranscriptional regulation of cell wall biosynthesis genes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin N. Nelson ◽  
Savannah G. Beakley ◽  
Sierra Posey ◽  
Brittney Conn ◽  
Emma Maritz ◽  
...  

AbstractCryptococcal meningitis is a life-threatening disease among immune compromised individuals that is caused by the opportunistic fungal pathogen Cryptococcus neoformans. Previous studies have shown that the fungus is phagocytosed by dendritic cells (DCs) and trafficked to the lysosome where it is killed by both oxidative and non-oxidative mechanisms. While certain molecules from the lysosome are known to kill or inhibit the growth of C. neoformans, the lysosome is an organelle containing many different proteins and enzymes that are designed to degrade phagocytosed material. We hypothesized that multiple lysosomal components, including cysteine proteases and antimicrobial peptides, could inhibit the growth of C. neoformans. Our study identified the contents of the DC lysosome and examined the anti-cryptococcal properties of different proteins found within the lysosome. Results showed several DC lysosomal proteins affected the growth of C. neoformans in vitro. The proteins that killed or inhibited the fungus did so in a dose-dependent manner. Furthermore, the concentration of protein needed for cryptococcal inhibition was found to be non-cytotoxic to mammalian cells. These data show that many DC lysosomal proteins have antifungal activity and have potential as immune-based therapeutics.


Author(s):  
Esfandiar Shojaei ◽  
Joanna C Walsh ◽  
Nikhil Sangle ◽  
Brian Yan ◽  
Michael S Silverman ◽  
...  

Abstract Disseminated histoplasmosis is a life-threatening disease usually seen in immunocompromised patients living in endemic areas. We present an apparently immunocompetent patient with gastrointestinal histoplasmosis who was initially diagnosed as biopsy-proven Crohn’s disease. Following discontinuation of anti-inflammatory drugs and institution of antifungal therapy, his GI illness completely improved. Specific fungal staining should be routinely included in histopathologic assessment of tissue specimens diagnosed as Crohn’s disease.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1176
Author(s):  
Vanesa Pérez-Laguna ◽  
Yolanda Barrena-López ◽  
Yolanda Gilaberte ◽  
Antonio Rezusta

Candidiasis is very common and complicated to treat in some cases due to increased resistance to antifungals. Antimicrobial photodynamic therapy (aPDT) is a promising alternative treatment. It is based on the principle that light of a specific wavelength activates a photosensitizer molecule resulting in the generation of reactive oxygen species that are able to kill pathogens. The aim here is the in vitro photoinactivation of three strains of Candida spp., Candida albicans ATCC 10231, Candida parapsilosis ATCC 22019 and Candida krusei ATCC 6258, using aPDT with different sources of irradiation and the photosensitizer methylene blue (MB), alone or in combination with chlorhexidine (CHX). Irradiation was carried out at a fluence of 18 J/cm2 with a light-emitting diode (LED) lamp emitting in red (625 nm) or a white metal halide lamp (WMH) that emits at broad-spectrum white light (420–700 nm). After the photodynamic treatment, the antimicrobial effect is evaluated by counting colony forming units (CFU). MB-aPDT produces a 6 log10 reduction in the number of CFU/100 μL of Candida spp., and the combination with CHX enhances the effect of photoinactivation (effect achieved with lower concentration of MB). Both lamps have similar efficiencies, but the WMH lamp is slightly more efficient. This work opens the doors to a possible clinical application of the combination for resistant or persistent forms of Candida infections.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Jianfeng Lin ◽  
Xiaorong Lin ◽  
Zachary A. Lewis ◽  
...  

ABSTRACT Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus cause life-threatening candidiasis, cryptococcosis, and aspergillosis, resulting in several hundred thousand deaths annually. The patients at the greatest risk of developing these life-threatening invasive fungal infections have weakened immune systems. The vulnerable population is increasing due to rising numbers of immunocompromised individuals as a result of HIV infection or immunosuppressed individuals receiving anticancer therapies and/or stem cell or organ transplants. While patients are treated with antifungals such as amphotericin B, all antifungals have serious limitations due to lack of sufficient fungicidal effect and/or host toxicity. Even with treatment, 1-year survival rates are low. We explored methods of increasing drug effectiveness by designing fungicide-loaded liposomes specifically targeted to fungal cells. Most pathogenic fungi are encased in cell walls and exopolysaccharide matrices rich in mannans. Dectin-2 is a mammalian innate immune membrane receptor that binds as a dimer to mannans and signals fungal infection. We coated amphotericin-loaded liposomes with monomers of Dectin-2’s mannan-binding domain, sDectin-2. sDectin monomers were free to float in the lipid membrane and form dimers that bind mannan substrates. sDectin-2-coated liposomes bound orders of magnitude more efficiently to the extracellular matrices of several developmental stages of C. albicans, C. neoformans, and A. fumigatus than untargeted control liposomes. Dectin-2-coated amphotericin B-loaded liposomes reduced the growth and viability of all three species more than an order of magnitude more efficiently than untargeted control liposomes and dramatically decreased the effective dose. Future efforts focus on examining pan-antifungal targeted liposomal drugs in animal models of fungal diseases. IMPORTANCE Invasive fungal diseases caused by Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have mortality rates ranging from 10 to 95%. Individual patient costs may exceed $100,000 in the United States. All antifungals in current use have serious limitations due to host toxicity and/or insufficient fungal cell killing that results in recurrent infections. Few new antifungal drugs have been introduced in the last 2 decades. Hence, there is a critical need for improved antifungal therapeutics. By targeting antifungal-loaded liposomes to α-mannans in the extracellular matrices secreted by these fungi, we dramatically reduced the effective dose of drug. Dectin-2-coated liposomes loaded with amphotericin B bound 50- to 150-fold more strongly to C. albicans, C. neoformans, and A. fumigatus than untargeted liposomes and killed these fungi more than an order of magnitude more efficiently. Targeting drug-loaded liposomes specifically to fungal cells has the potential to greatly enhance the efficacy of most antifungal drugs.


2021 ◽  
Vol 7 (5) ◽  
pp. 376
Author(s):  
Tobias Lahmer ◽  
Gonzalo Batres Baires ◽  
Roland M. Schmid ◽  
Johannes R. Wiessner ◽  
Jörg Ulrich ◽  
...  

Fungal peritonitis is a life-threatening condition which is not only difficult to diagnose, but also to treat. Following recent guidelines, echinocandins and azoles are the recommended antimycotics for the management of intra-abdominal Candida spp. infections, with a favor for echinocandins in critically ill patients. However, the new extended spectrum triazole isavuconazole also has a broad spectrum against Candida spp. Data on its target-site penetration are sparse. Therefore, we assessed isavuconazole concentrations and penetration ratios in ascites fluid of critically ill patients. Obtaining of Isavuconazole plasma and ascites fluid levels as well penetration ratios using paracentesis in critically ill patients. Isavuconazole concentrations were quantified in human plasma and ascites by a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method. Isavuconazole concentrations in plasma and ascites fluid were measured in sixteen critically ill patients. Isavuconazol levels in ascites fluid (1.06 µg/mL) were lower than plasma levels (3.08 µg/mL). Penetration ratio was 36%. In two out of sixteen patients, Candida spp., in detail C. glabrata and C. tropicalis, could be isolated. Cmax/MIC Ratio in plasma of 560 for C. glabrata and 2166 for C. tropicalis could be observed. Following our results, isavuconazole penetrates into ascites. Successful treatment in Candida spp. peritonitis depends on pathogen susceptibility.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 151
Author(s):  
Alexie Mayor ◽  
Adélaïde Chesnay ◽  
Guillaume Desoubeaux ◽  
David Ternant ◽  
Nathalie Heuzé-Vourc’h ◽  
...  

Respiratorytract infections (RTIs) are frequent and life-threatening diseases, accounting for several millions of deaths worldwide. RTIs implicate microorganisms, including viruses (influenza virus, coronavirus, respiratory syncytial virus (RSV)), bacteria (Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus and Bacillus anthracis) and fungi (Pneumocystis spp., Aspergillus spp. and very occasionally Candida spp.). The emergence of new pathogens, like the coronavirus SARS-CoV-2, and the substantial increase in drug resistance have highlighted the critical necessity to develop novel anti-infective molecules. In this context, antibodies (Abs) are becoming increasingly important in respiratory medicine and may fulfill the unmet medical needs of RTIs. However, development of Abs for treating infectious diseases is less advanced than for cancer and inflammatory diseases. Currently, only three Abs have been marketed for RTIs, namely, against pulmonary anthrax and RSV infection, while several clinical and preclinical studies are in progress. This article gives an overview of the advances in the use of Abs for the treatment of RTIs, based on the analysis of clinical studies in this field. It describes the Ab structure, function and pharmacokinetics, and discusses the opportunities offered by the various Ab formats, Ab engineering and co-treatment strategies. Including the most recent literature, it finally highlights the strengths, weaknesses and likely future trends of a novel anti-RTI Ab armamentarium.


2017 ◽  
Vol 26 (1) ◽  
pp. 89-92 ◽  
Author(s):  
Anisha M. Fernandes ◽  
Maheshkumar M. Lakhe ◽  
Sanjay A. Pai

Toxoplasmosis is generally asymptomatic in immunocompetent individuals, but it can be life-threatening in immunocompromised patients. We present a case of a 62-year-old man with clinical features of acute appendicitis. Histology showed a transmural infiltrate of eosinophils. In addition, there were reactive lymphoid follicles with histiocytes in the submucosa and tachyzoites in the muscularis propria. Immunohistochemistry confirmed the diagnosis of toxoplasma appendicitis. Serological evaluation yielded negative results. Retrospective review of the history revealed that the patient was on long-term immunosuppressive therapy with methotrexate. The patient was treated with sulfamethoxazole-trimethoprim and is asymptomatic at 7-month follow-up. Toxoplasma appendicitis must be considered in the differential diagnosis of appendicitis in immunosuppressed patients.


2021 ◽  
Vol 14 (4) ◽  
pp. e240341
Author(s):  
Michelle M de Leau ◽  
Remko S Kuipers

The incidence of Streptococcus pneumoniae bacteraemia has risen due to a worldwide increase in immunocompromised patients and antibiotic resistance. We describe three patients who experienced severe, including cardiovascular, complications of pneumococcal bacteraemia. Cardiovascular complications related to pneumococci may run a fulminant course. However, some of these life-threatening complications (eg, endocarditis and aortitis) may long remain unnoticed or be misdiagnosed and therefore delay correct treatment. We review the literature with regards to the incidence, diagnosis and treatment of these rare but possibly lethal and hence important cardiovascular complications.


2013 ◽  
Vol 42 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Flávia Cristina Volpato ◽  
Juliana Rico Pires ◽  
Isis do Rosário da Costa Martinez ◽  
Silvana Regina Perez Orrico ◽  
Marciano Pires da Costa ◽  
...  

INTRODUCTION: It is suggested that individuals with diabetes are more susceptible to Candida infections than healthy people, especially if periodontal infection is associated. OBJECTIVE: This study evaluated the prevalence of colonization by Candida spp. during radiographic examination in diabetic and non-diabetic patients. MATERIAL AND METHODS: Twenty-six patients with type 2 diabetes mellitus and 20 patients without diabetes mellitus, presenting chronic periodontitis and presence of Candida spp. in saliva were evaluated. During radiographic examination, samples of saliva were collected from: oral mucosa, conventional radiographic periapical film, digital x-ray sensor (CDR), and bite block of the receptor-positioning device. Colony forming units (cfu/mL) and identification of Candida yeasts were assessed. RESULT: Oral mucosa from both groups showed the highest colonization with Candida spp. if compared with others surfaces collected (p < 0.05). In diabetic patients, the mucosa of the upper left regions showed higher levels of colonization. In non-diabetic patients, the upper right molar region showed the highest level of colonization during the examination of the receptor-positioning device, the sensor and the non-sensitive film. Candida spp. levels in saliva were similar between diabetics (mean = 3.0 × 10(6)) and non-diabetics (mean = 3.8 × 10(6)). CONCLUSION: No difference in Candida spp. colonization (cfu/mL) in diabetics and non-diabetic patients was observed for the five collected surfaces and the simulated radiographic region. Candida albicans was the prevalent species of Candida spp. found on all the samples.


Sign in / Sign up

Export Citation Format

Share Document