scholarly journals Corn root morphoanatomy at different development stages and yield under water stress

2016 ◽  
Vol 51 (4) ◽  
pp. 330-339 ◽  
Author(s):  
Thiago Corrêa de Souza ◽  
Paulo César Magalhães ◽  
Evaristo Mauro de Castro ◽  
Vinícius Politi Duarte ◽  
Alyne Oliveira Lavinsky

Abstract: The objective of this work was to characterize the morphoanatomy of roots and the yield traits of two corn hybrids contrasting for drought tolerance (DKB 390, tolerant; and BRS 1030, sensitive), at different stages of development. Water deficit was imposed for ten days, in a greenhouse, at three growth stages: V5, VT, and R3. These treatments were combined to generate cumulative stress during the plant cycle, as: V5VT, V5R3, VTR3, and V5VTR3. The following were analyzed: root anatomy; proportion of aerenchyma in the cortex; metaxylem number and diameter; phloem thickness; as well as morphological characteristics, such as root length, volume, and surface area, specific root length, length of fine roots, grain yield, and ear length and diameter. Development stage affected the responses to stress: DKB 390 showed the best performance for root morphoanatomy and yield traits, under drought stress, at the reproductive stages, mainly R3, and in the treatments with cumulative stress, especially V5VTR3; whereas BRS 1030 presented higher means for the studied parameters, mainly at the V5 and VT stages, but did not show a higher grain yield under water stress. The greater tolerance of the DKB 390 hybrid to water deficit is probably linked with a memory of pre-exposure to water stress at different growth stages.

2011 ◽  
Vol 39 (2) ◽  
pp. 153 ◽  
Author(s):  
Nourali SAJEDI ◽  
Hamid MADANI ◽  
Ahmad NADERI

This study was carried out to investigate effects of microelements under water deficit stress at different growth stages on antioxidant enzyme alteration, chemical biomarker and grain yield of maize in the years 2007 and 2008. The experiment was conducted in a split plot factorial based on a randomized complete block design with four replications. There were three factors, water deficit stress at different stages of growth as main plot and combinations of selenium (with and without using) and microelements (with and without using) as sub plots. The result indicated that the activity of superoxide dismutase and malondialdehyde content under water deficit stress increased, but grain yield was reduced. The highest grain yield was obtained from optimum irrigation, while in the case of with water deficit stress at V8 stage it was non significant. Selenium spray increased activity of superoxide dismutase enzyme, malondialdehyde content of leaves in V8, R2 and R4 stages and also grain yield. Application of microelements increased the leaves superoxide dismutase enzyme activity and malondialdehyde content. Selenium and microelements spray under water deficit stress conditions during vegetative growth and dough stage increased grain yield in comparison to not spraying elements under water stress conditions. The present results also showed that by using selenium and microelements under water stress can obtain acceptable yield compared to not using these elements.


2012 ◽  
Vol 151 (5) ◽  
pp. 630-647 ◽  
Author(s):  
R. SANKARAPANDIAN ◽  
S. AUDILAKSHMI ◽  
V. SHARMA ◽  
K. GANESAMURTHY ◽  
H. S. TALWAR ◽  
...  

SUMMARYRecent trends in climate change resulting in global warming and extreme dry spells during rainy seasons are having a negative impact on grain and fodder production in rain-fed crops in India. Understanding the mechanisms of drought tolerance at various growth stages will help in developing tolerant genotypes. Crosses were made between elite and drought-tolerant sorghums, and F2and F3progenies were evaluated for drought tolerance in multiple locations. Twenty-five F4/F5derivatives along with drought-tolerant check plants (two high-yielding genotypes showing moderate drought tolerance: C43 (male parent of the commercial hybrid CSH 16, tolerant to drought) and CSV 17, (a pure line commercial cultivar released for drought-prone areas) were screened for drought tolerance under a factorial randomized block design with three replications during the rain-free months of April–June in 2007 and 2008 at Tamil Nadu Agricultural University, Kovilpatti, India. In each generation/year, four trials were conducted and water stress at different phases of crop growth,viz. vegetative, flowering and post-flowering (maturity), was imposed by withholding irrigation. Observations were recorded on grain and straw yields, plant height, number of roots, root length, leaf relative water content (LRWC), chlorophyll content and stomatal conductance under all treatments. The traits, grain yield, plant height, average root length and stomatal conductance showed significant mean sums of squares (SSs) for genotype × environment (G × E), suggesting that genotypes had significant differential response to the changing environments. Significant mean SSs due to G × E (linear) were obtained for straw yield, LRWC and chlorophyll content, indicating that the variability is partly genetic and partly influenced by environment. Grain yield was correlated with chlorophyll content (r = 0·43) at the vegetative stage, with number of roots (r = 0·49), LRWC (r = 0·51), chlorophyll content (r = 0·46) and stomatal conductance (r = −0·51) at the pre-flowering stage, and with LRWC (r = 0·50) and stomatal conductance (r = −0·40) at the post-flowering stage, under water stress. Partial least square (PLS) analysis showed that different traits were important for grain yield under water stress at different growth stages. Pyramiding the genes for the traits responsible for high grain yield under stress will help in developing stable genotypes at different stages of plant growth.


1970 ◽  
Vol 40 (2) ◽  
pp. 171-175 ◽  
Author(s):  
Shakil Uddin Ahmed

Soybean leaf Nitrogen (N) status correlated linearly with the amount of chlorophylls and SCMR at flowering stage in response to water deficit levels. In addition, SCMR showed significant positive correlation with chlorophylls at flowering stage. Grain yield significantly correlated to the leaf nitrogen as well as to the chlorophylls and SCMR at flowering stage in response to water deficit levels. These relationships indicated that the water stress decreased leaf nitrogen, chlorophylls and SCMR which in turn caused decreased grain yield of soybean. The results from the study suggest that, flowering stage is the best time for prediction on the adverse effects of water stress on leaf nitrogen assimilation, chlorophylls and SCMR on potential yielding ability of soybean.Key words: Soil water deficit; Leaf nitrogen; Chlorophyll (a+b); Growth stages; Soybean DOI: http://dx.doi.org/10.3329/bjb.v40i2.9773   Bangladesh J. Bot. 40(2): 171-175, 2011 (December)


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
M. Musse ◽  
G. Hajjar ◽  
N. Ali ◽  
B. Billiot ◽  
G. Joly ◽  
...  

Abstract Background Drought is a major consequence of global heating that has negative impacts on agriculture. Potato is a drought-sensitive crop; tuber growth and dry matter content may both be impacted. Moreover, water deficit can induce physiological disorders such as glassy tubers and internal rust spots. The response of potato plants to drought is complex and can be affected by cultivar type, climatic and soil conditions, and the point at which water stress occurs during growth. The characterization of adaptive responses in plants presents a major phenotyping challenge. There is therefore a demand for the development of non-invasive analytical techniques to improve phenotyping. Results This project aimed to take advantage of innovative approaches in MRI, phenotyping and molecular biology to evaluate the effects of water stress on potato plants during growth. Plants were cultivated in pots under different water conditions. A control group of plants were cultivated under optimal water uptake conditions. Other groups were cultivated under mild and severe water deficiency conditions (40 and 20% of field capacity, respectively) applied at different tuber growth phases (initiation, filling). Water stress was evaluated by monitoring soil water potential. Two fully-equipped imaging cabinets were set up to characterize plant morphology using high definition color cameras (top and side views) and to measure plant stress using RGB cameras. The response of potato plants to water stress depended on the intensity and duration of the stress. Three-dimensional morphological images of the underground organs of potato plants in pots were recorded using a 1.5 T MRI scanner. A significant difference in growth kinetics was observed at the early growth stages between the control and stressed plants. Quantitative PCR analysis was carried out at molecular level on the expression patterns of selected drought-responsive genes. Variations in stress levels were seen to modulate ABA and drought-responsive ABA-dependent and ABA-independent genes. Conclusions This methodology, when applied to the phenotyping of potato under water deficit conditions, provides a quantitative analysis of leaves and tubers properties at microstructural and molecular levels. The approaches thus developed could therefore be effective in the multi-scale characterization of plant response to water stress, from organ development to gene expression.


1988 ◽  
Vol 39 (1) ◽  
pp. 11 ◽  
Author(s):  
WS Meyer ◽  
HD Barrs

Transient waterlogging associated with spring irrigations on slowly draining soils causes yield reduction in irrigated wheat. Physiological responses to short-term flooding are not well understood. The aim of this experiment was to monitor above- and below-ground responses of wheat to single waterlogging events during and after stem elongation and to assess the sensitivity of the crop at these growth stages to flooding. Wheat (cv. Bindawarra) was grown in drainage lysimeters of undisturbed cores of Marah clay loam soil. A control treatment (F0) was well-watered throughout the season without surface flooding, while three others were flooded for 96 h at stem elongation (Fl), flag leaf emergence (F2) and anthesis (F3), respectively. Soil water content, soil O2, root length density, leaf and stem growth, apparent photosynthesis (APS), plant nutrient status and grain yield were measured. Soil water content increased and soil O2 levels decreased following flooding; the rate of soil O2 depletion increasing with crop age and root length. Leaf and stem growth and APS increased immediately following flooding, the magnitude of the increases was in the order F1 >F2>F3. A similar order existed in the effect of flooding which decreased the number of roots. Subsequently, leaf and stem growth decreased below that of F0 plants in F1, and briefly in F2. Decreases in APS of treated plants compared to F0 plants appeared to be due to their greater sensitivity to soil water deficit. There was no effect of flooding on grain yield. It is suggested that, while plant sensitivity to flooding decreased with age, flooding at stem elongation had no lasting detrimental effect on yield when post-flood watering was well controlled.


2014 ◽  
Vol 38 (4) ◽  
pp. 719-732 ◽  
Author(s):  
PK Sarkar ◽  
MSU Talukder ◽  
SK Biswas ◽  
A Khatun

Timing and the extent of water deficit were studied in a field experiment on wheat (cv. Shatabdi) for three consecutive years from 2003-04 through 2005-06 at Jamalpur area. The effects of number and timing of irrigation application on yields were investigated under variable soil moisture condition in the root zone of different treatments. Eight deficit irrigations, including one no stress and one rainfed treatments were selected to subject the crop to various degrees of soil water deficit at different stages of crop growth. Measured amount of irrigation water was applied as per schedule prescribed for a particular treatment. Grain yield (GY), biomass, harvest index (HI), and water productivity (WP) were reasonably affected by deficit irrigation. Other yield contributing parameters like 1000-grain weight, grains/spike and spike, length were also affected by different levels of deficit irrigation. During grain formation stage, water deficit did not affect the grain yield but saved water significantly. Such water deficit treatments also shortened the grain maturation period. Differences in grain and straw yield among the stressed and no stress treatments are comparatively small, and statistically insignificant in some cases. The highest water productivity (2.02 kg/m3) was observed in treatment which was irrigated only once at crown root initiation stage (T2) although the yield was comparatively low. The CRI (crown root initiation) stage was found the most sensitive to water stress. Water stress at vegetative stage also reduced the yield considerably. DOI: http://dx.doi.org/10.3329/bjar.v38i4.19663 Bangladesh J. Agril. Res. 38(4): 719-732, December 2013


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 371 ◽  
Author(s):  
Isabella Mendonça Arruda ◽  
Vânia Moda-Cirino ◽  
Alessandra Koltun ◽  
Douglas Mariani Zeffa ◽  
Getúlio Takashi Nagashima ◽  
...  

Water stress is one of the main limiting factors for common bean crops, negatively affecting grain yield and seed quality. Thus, the objective of this study was to evaluate the inheritance of agromorphological and physiological traits related to drought tolerance in order to identify promising combinations. The experiment was carried out in a greenhouse with a partial diallel scheme between three drought-tolerant genotypes (IAPAR 81, BAT 477. and SEA 5), and nine cultivars widely grown in Brazil (BRS Estilo, IAC Alvorada, IPR Campos Gerais, IPR Uirapuru, IPR Nhambu, BRS Esteio, IPR Garça, BRS Radiante, and DRK 18), in a randomized block design with four replicates. The plants were grown in pots with substrate under 80% of pot capacity until they reached the stage R5, when water supply was restricted to 30% for 20 days in the pots under stress treatment. A wide variability for the agromorphological and physiological traits was observed. Water deficit reduced plant performance for most agromorphological traits and altered their physiological metabolism. Additive and non-additive effects are involved in the genetic control of the majority of agromorphological and physiological traits both under water stress and control (well-watered) conditions. The parental genotypes BAT 477 (group I) and IAC Alvorada, IPR Uirapuru, and BRS Esteio (group II) may be included in breeding programs aiming at improving drought tolerance in common bean since they present high positive general combining abilities for agromorphological traits. The crosses IAPAR 81 × IPR Campos Gerais, and SEA 5 × BRS Radiante resulted in the best combinations considering grain yield per plant and total dry biomass, when cultivated under water deficit.


2014 ◽  
Vol 68 (1) ◽  
pp. 65-75
Author(s):  
Soleiman Mohammadi ◽  
Reza Kas Nazani ◽  
Ayda Hosseinzadeh Mahootchi ◽  
Keiwan Ftohi

ABSTRACT In order to evaluate promising lines in terms of grain yield and water-soluble carbohydrates remobiliza-tion, an experiment with fifteen promising lines and two checks was carried out under full irrigation and terminal water stress conditions at Miyandoab Agricultural Research and Natural Resources Station. Mobilized dry matter content and remobilization percentage from shoot to grain under water deficit (177mg)(11.2%) were greater than those under well watering condition. The lowest (110 mg) and the highest (260mg) mobilized dry matter to grain were obtained for C-79-18 and C-83-15lines, respectively. Water deficit reduced grain yield of barley genotypes by 200-1600 kg/ha, and mean grain yield reduction was 800 kg/ha. Line 14 with 5.880and 5.300t/ha grain yield in favorable and water stress conditions was superior to the other lines. Under water deficit condition, line 14 had greater grain yieldby20% and 38% than the Bahman and Makouee cultivars, respectively. The results showed that greater grain yield in tolerant lines under water deficit was due to remobilization of unstructured carbohydrates from shoot to grain. Thus, it seems that selection of lines with higher translocated dry matter and contribution of pre-anthesis assimilate in grain filling under water stress, the suitable way for achieving genotypes with high grain yield under water stress condition.


2018 ◽  
Vol 69 (6) ◽  
pp. 594 ◽  
Author(s):  
Goudarz Ahmadvand ◽  
Somayeh Hajinia

Piriformospora indica is one of the cultivable root-colonising endophytic fungi of the order Sebacinales, which efficiently promote plant growth, uptake of nutrients, and resistance to biotic and abiotic stresses. The aim of this study was to evaluate the effect of P. indica on millet (Panicum miliaceum L.) under water-stress conditions. Two field experiments were carried out in a factorial arrangement at Bu-Ali Sina University of Hamedan, Iran, during 2014 and 2015. The first factor was three levels of water-deficit stress, with irrigation after 60 mm (well-watered), 90 mm (mild stress) and 120 mm (severe stress) evaporation from pan class A. The second factor was two levels of fungus P. indica: inoculated and uninoculated. Results showed that water-deficit stress significantly decreased grain yield and yield components. Colonisation by P. indica significantly increased number of panicles per plant, number of grains per panicle and 1000-grain weight, regardless of water supply. Inoculation with P. indica increased grain yield by 11.4% (year 1) and 19.72% (year 2) in well-watered conditions and by 35.34% (year 1) and 32.59% (year 2) under drought stress, compared with uninoculated plants. Maximum flag-leaf area (21.71 cm2) was achieved with well-watered conditions. Severe water stress decreased flag-leaf area by 53.36%. Flag-leaf area was increased by 18.64% by fungus inoculation compared with the uninoculated control. Under drought conditions, inoculation with P. indica increased plant height by 27.07% and panicle length by 9.61%. Severe water stress caused a significant decrease in grain phosphorus concentration, by 42.42%, compared with the well-watered treatment. By contrast, grain nitrogen and protein contents were increased about 30.23% and 30.18%, respectively, with severe water stress. Inoculation with P. indica increased grain phosphorus by 24.22%, nitrogen by 7.47% and protein content by 7.54% compared with control. Water stress reduced leaf chlorophyll and carotenoid concentrations, whereas P. indica inoculation enhanced chlorophyll concentrations by 27.18% under severe water stress. The results indicated the positive effect of P. indica on yield and physiological traits of millet in both well-watered and water-stressed conditions.


2015 ◽  
Vol 9 (5) ◽  
pp. 103-107 ◽  
Author(s):  
Amin Farnia ◽  
Amin Tork

A field experiment was laid out in order to evaluation of effects water stress on yield and yield components of wheat cultivars in Lorestan province in Islamic Azad University, Boroujerd branch, Iran at 2014. The experiment was laid out in a split-plot design based on randomized block design with three replications. Treatments were irrigation in five levels such as 1: four period irrigation after anthesis, 2: three period irrigation after anthesis, 3: two period irrigation after anthesis, 4: one period irrigation after anthesis and 5: control in main plots and  three wheat cultivars (Shiraz, Pishtaz and Bahar) in sub plots.  The results showed that, the effect of water stress, cultivar and interaction between them on all parameters were significant at 1% level. The height of Pishtaz cultivar was taller than other cultivars. The Pishtaz cultivar with one period irrigation after anthesis had the highest number of spike per square and Bahar cultivar with one period irrigation after anthesis had the lowest number of spike per square. However, 1000- grainwas decreased in water deficit treatment.  However, the Pishtaz cultivar with four period irrigation had the highest plant dry weight and grain yield and Bahar cultivar non irrigation treatment after anthesis had the lowest plant dry weight and Shiraz cultivar in non-irrigation treatment had the lowest grain yield. The results showed that yield and yield components of common wheat decreased with increasing of water deficit and for increasing in grain yield of wheat complete irrigation are needed. However, Pishtaz cultivar had a highest grain yield and dry matter production. Then we can increase grain yield and production of wheat with cultivation of Pishtaz cultivar and avoid of water stress.DOI: http://dx.doi.org/10.3126/ijls.v9i5.12707


Sign in / Sign up

Export Citation Format

Share Document