scholarly journals Performance of spray nozzles in land applications with high speed

2012 ◽  
Vol 32 (6) ◽  
pp. 1126-1132 ◽  
Author(s):  
Samir E. Zaidan ◽  
Casimiro D. Gadanha Jr ◽  
Marco A. Gandolfo ◽  
Cristiano O. Pontelli ◽  
Walter W. Mosquini

The aim of this study was to evaluate different spray nozzles for land applications in high speed on the coverage and deposit in soybean plants pulverization. It was evaluated the AXI 110 04 plane jet nozzles operated at speed of 4.17m.s-1 (control), the grey APE and the AXI 110 08 plane jets, and the TD HiSpeed 110 06 and AXI TWIN 120 06 twin jets, at speed of 9.72m.s-1. The application volume was fixed in 120L ha-1. The application efficiency was evaluated by two different methods: analysis of the coverage area using fluorescent pigment and UV light and analysis of deposits through the recovery and quantification of FD&C N°1 brilliant blue marker by spectrophotometry. Both analyses were done in samples collected from top, middle and bottom parts of the plants. The spray nozzles showed differences in coverage and deposit pattern, so in the top part, the coverage was increased with smaller drops and the deposits were increased with medium drops. In the other parts of the plants, there were no statistical differences between the treatments for both coverage and deposits. The displacement speed did not influence the application efficiency for nozzles with the same drop pattern, and the obtained spray coverage and deposits at the medium and bottom parts of the plants were less than 50% of that found at the top of the soybean plants.

Author(s):  
A. Suresh Babu ◽  
B. Anand

: A Linear Feedback Shift Register (LFSR) considers a linear function typically an XOR operation of the previous state as an input to the current state. This paper describes in detail the recent Wireless Communication Systems (WCS) and techniques related to LFSR. Cryptographic methods and reconfigurable computing are two different applications used in the proposed shift register with improved speed and decreased power consumption. Comparing with the existing individual applications, the proposed shift register obtained >15 to <=45% of decreased power consumption with 30% of reduced coverage area. Hence this proposed low power high speed LFSR design suits for various low power high speed applications, for example wireless communication. The entire design architecture is simulated and verified in VHDL language. To synthesis a standard cell library of 0.7um CMOS is used. A custom design tool has been developed for measuring the power. From the results, it is obtained that the cryptographic efficiency is improved regarding time and complexity comparing with the existing algorithms. Hence, the proposed LFSR architecture can be used for any wireless applications due to parallel processing, multiple access and cryptographic methods.


2017 ◽  
Vol 66 (5) ◽  
pp. 3515-3525 ◽  
Author(s):  
Bo Ai ◽  
Ruisi He ◽  
Guangkai Li ◽  
Ke Guan ◽  
Danping He ◽  
...  

Author(s):  
Noor Nateq Alfaisaly ◽  
Suhad Qasim Naeem ◽  
Azhar Hussein Neama

Worldwide interoperability microwave access (WiMAX) is an 802.16 wireless standard that delivers high speed, provides a data rate of 100 Mbps and a coverage area of 50 km. Voice over internet protocol (VoIP) is flexible and offers low-cost telephony for clients over IP. However, there are still many challenges that must be addressed to provide a stable and good quality voice connection over the internet. The performance of various parameters such as multipath channel model and bandwidth over the Star trajectoryWiMAX network were evaluated under a scenario consisting of four cells. Each cell contains one mobile and one base station. Network performance metrics such as throughput and MOS were used to evaluate the best performance of VoIP codecs. Performance was analyzed via OPNET program14.5. The result use of multipath channel model (disable) was better than using the model (ITU pedestrian A). The value of the throughput at 15 dB was approximately 1600 packet/sec, and at -1 dB was its value 1300 packet/se. According to data, the Multipath channel model of the disable type the value of the MOS was better than the ITU Pedestrian A type.


2017 ◽  
Author(s):  
Fu Zhang ◽  
Yafei Wang ◽  
Wei Wang ◽  

A comparative analysis of the kinematic parameters of a goat on different slopes was conducted to study the kinematic parameters of goats on different slopes with walking mechanics. The uphill walking processes on different slopes (0°, 5°, 10°, 15°, 20°, 25° and 30°) were recorded by a high speed video system (VRI Phantom M110). The experimental image results were processed and analyzed using PCC and MATLAB software. The kinematic parameters were obtained from the goat walking on different slopes; these parameters are the changes of centroid with displacement, speed with time, and acceleration with time. As the gradient in the uphill process increases, the range of centroid fluctuation ranges from 0.079 to 0.59 and the rate of change ranges from 0.4 to 2.2 m/s, while the acceleration of the goat slope decreases. The present research can provide theoretical basis and experimental data for the design of a biomimetic agricultural slope walking mechanism.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Husain Al Hashimi ◽  
Caleb F. Hammer ◽  
Michel T. Lebon ◽  
Dan Zhang ◽  
Jungho Kim

Techniques based on temperature-sensitive paints (TSP) to measure time-resolved temperature and heat transfer distributions at the interface between a wall and fluid during pool and flow boiling are described. The paints are excited using ultraviolet (UV) light emitting diodes (LEDs), and changes in fluorescence intensity are used to infer local temperature differences across a thin insulator from which heat flux distribution is obtained. Advantages over infrared (IR) thermometry include the ability to use substrates that are opaque to IR (e.g., glass, plexiglass and plastic films), use of low-cost optical cameras, no self-emission from substrates to complicate data interpretation, high speed, and high spatial resolution. TSP-based methods to measure wall heat transfer distributions are validated and then demonstrated for pool and flow boiling.


2015 ◽  
Vol 799-800 ◽  
pp. 629-634
Author(s):  
Ke Zhi Yu ◽  
Hai Zhang ◽  
Yan Ling Liu

The energy minimization multi-scale model is applied to the plane jet. The stability conditions of plane jets is adopted to predict the velocity distribution of plane jet. When the ratio of total dissipation to viscous dissipation tends to the maximum is used as the optimization condition and entrancement factor is considered as a constant, the Gauss velocity distribution can be concluded in the plane jet.


2020 ◽  
Author(s):  
Matteo Battisti ◽  
Enrico Arnone ◽  
Mario Bertaina ◽  
Marco Casolino ◽  
Olivier Chanrion ◽  
...  

&lt;p&gt;The search for the physical mechanisms of lightning, transient luminous events and terrestrial gamma-ray flashes is receiving an extraordinary support by new space observations that have recently become available. Next to lightning detectors on geostationary satellites, new low orbit experiments are giving an unprecedented insight in the very source of these processes. Looking at the physics behind these new observations requires however to have a variety of different instruments covering the same event, and this is proving extremely challenging. Here, we present observations of UV emissions of elves and lightning taken for the first time simultaneously from the two instruments Mini-EUSO and ASIM operating on the international space station. Mini-EUSO was designed to perform observations of the UV-light night emission from Earth. It is a wide field of view telescope (44&amp;#176;x44&amp;#176; square FOV) installed for the first time on October 2019 inside the Zvezda Module of the ISS, looking nadir through a UV transparent window. Its optical system consists of two Fresnel lenses for light collection. The light is focused onto an array of 36 multi-anode photomultiplier tubes (MAPMT), for a total of 2304 pixels. Each pixel has a footprint on ground of ~5.5 km. The instrument is capable of single-photon counting on three different timescales: a 2.5 microsecond (D1) and a 320 microsecond (D2) timescale with a dedicated trigger system, and a 40.96ms timescale (D3) used to produce a continuous monitoring of the UV emission from the Earth. ASIM is an experiment dedicated to lightning and atmospheric processes. Its Modular Multispectral Imaging Array (MMIA) is made of an array of 3 high speed photometers probing different wavelength sampling at rates up to 100 kHz, and 2 Electron Multiplication Charge Coupled Devices (EM-CCDs) with a sub-km spatial resolution with an 80&amp;#176; FOV and recording up to 12 frames per second. Mini-EUSO detected several bright atmospheric events like lightning and elves, with a few km spatial resolution and different time resolutions, probing therefore different stages of the electromagnetic phenomena. Observations from Mini-EUSO were simultaneously captured by ASIM instruments, allowing for the first time to compare and complement the capabilities of the two instruments with a time inter-calibration based on unambiguous series of lightning detections.&lt;/p&gt;


2012 ◽  
Vol 591-593 ◽  
pp. 1835-1838
Author(s):  
Xu Hui Cao ◽  
Cai Wu Lu ◽  
Yu Ji Li

WI-FI is currently a popular wireless LAN technology, with access to high speed, large coverage area and so on. WI-FI has its flexibility and mobility, more and more attention, showing great prospects. This article describes the characteristics and advantages of WI-FI technology, combined with the actual situation of a WI-FI based wireless sensor technology and monitoring system for the implementation of the mine ventilation plan, and the program specific application in the monitoring system has been described, the program has proved flexible, simple wiring, has certain application value.


Sign in / Sign up

Export Citation Format

Share Document