scholarly journals Effects of vinasse application under the physical attributes of soil covered with sugarcane straw

2013 ◽  
Vol 33 (4) ◽  
pp. 636-646 ◽  
Author(s):  
Cicero da S. Costa ◽  
Elvira M. R. Pedrosa ◽  
Mario M. Rolim ◽  
Hugo R. B. Santos ◽  
Aluízio T. Cordeiro Neto

Areas under vinasse application have been associated to favorable physical conditions for root development, aeration, infiltration and water movement in soil profile. This study aimed to evaluate changes on physical attributes of soil under sugarcane straw after vinasse application in two sugarcane growing areas (Area 1 and Area 2) under mechanized management in the state of Paraíba, Brazil. In each area, the samples were collected in the 0-0.20, 0.20-0.40 and 0.40-0.60m layers of the soil, in 36 points, distributed in a 10×10m mesh, one day before and 40 days after vinasse application. The data were submitted to multivariate analysis with repeated measures and geostatistics. The vinasse application decreased soil density and increased total porosity in both Areas and increased organic matter in Area 2. In Area 1 occurred pure nugget effect for the fractions of sand, silt and clay, independent of soil layer. In Area 2, this effect was verified mostly at superficial layers, except for the fraction of clay that presented a moderate degree of spatial dependence.

2016 ◽  
Vol 36 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Gabriel G. de G. Cardoso ◽  
Rilley C. Wanderley ◽  
Mara L. C. Souza

ABSTRACT This study aimed to evaluate the spatial dependence of physical attributes in a soil cultivated with Brachiaria grass. A 12-m regular sampling grid was established within an area of 3.500 m2. Thirty-five soil samples were collected at 0-30 cm depth for particle density, bulk density, texture and total porosity analysis. These data were evaluated using statistical methods of indicator kriging and the GS+ software. The GS+ software was used to develop three-dimensional maps and evaluate semivariograms. The spatial dependence was evaluated using experimental semivariograms. The analyzed attributes indicated the occurrence of spatial dependence when fit to the exponential model. Areas with higher porosity occurred in the regions with lower bulk densities and higher particle densities.


2021 ◽  
Vol 51 ◽  
Author(s):  
Diogo Neia Eberhardt ◽  
Robélio Leandro Marchão ◽  
Pedro Rodolfo Siqueira Vendrame ◽  
Marc Corbeels ◽  
Osvaldo Guedes Filho ◽  
...  

ABSTRACT Tropical Savannas cover an area of approximately 1.9 billion hectares around the word and are subject to regular fires every 1 to 4 years. This study aimed to evaluate the influence of burning windrow wood from Cerrado (Brazilian Savanna) deforestation on the spatial variability of soil chemical properties, in the field. The data were analysed by using geostatistical methods. The semivariograms for pH(H2O), pH(CaCl2), Ca, Mg and K were calculated according to spherical models, whereas the phosphorus showed a nugget effect. The cross semi-variograms showed correlations between pH(H2O) and pH(CaCl2) with other variables with spatial dependence (exchangeable Ca and Mg and available K). The spatial variability maps for the pH(H2O), pH(CaCl2), Ca, Mg and K concentrations also showed similar patterns of spatial variability, indicating that burning the vegetation after deforestation caused a well-defined spatial arrangement. Even after 20 years of use with agriculture, the spatial distribution of pH(H2O), pH(CaCl2), Ca, Mg and available K was affected by the wood windrow burning that took place during the initial deforestation.


2004 ◽  
Vol 47 (5) ◽  
pp. 725-732 ◽  
Author(s):  
José Frederico Centurion ◽  
Amauri Nelson Beutler ◽  
Zigomar Menezes de Souza

The objective of this study was to assess the physical attributes of a kaolinitic oxisol, medium texture (Haplustox) and an oxidic oxisol, clayey (Eutrustox) under different usage systems, localized in the region of Jaboticabal, SP, Brazil. The usage systems were sugarcane, cotton and forest. Parameters such as soil bulk density, total porosity, macro and microporosity at the depths of 0.0-0.1; 0.1-0.2; 0.2-0.3, and 0.3-0.4 m were evaluated. Haplustox showed greater bulk density and smaller total porosity, macro and microporosity. The usage increased the bulk density in 0.0-0.3 m depth, with greater effects on the kaolinitic oxisol, mainly in 0.1-0.2 m depth in the areas cultivated with sugarcane.


Irriga ◽  
2003 ◽  
Vol 8 (3) ◽  
pp. 242-249 ◽  
Author(s):  
Amauri Nelson Beutler ◽  
José Frederico Centurion ◽  
Cassiano Garcia Roque ◽  
Zigomar Menezes de Souza

INFLUÊNCIA DA COMPACTAÇÃO E DO CULTIVO DE SOJA NOS ATRIBUTOS FÍSICOS E NA CONDUTIVIDADE HIDRÁULICA EM LATOSSOLO VERMELHO   Amauri Nelson BeutlerJosé Frederico CenturionCassiano Garcia RoqueZigomar Menezes de SouzaDepartamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP. CEP 14870-000. E-mail: [email protected], [email protected]  1 RESUMO              Este estudo teve como objetivo determinar a influência da compactação e do cultivo de soja nos atributos físicos e na condutividade hidráulica de um Latossolo Vermelho de textura média. O experimento foi conduzido na Universidade Estadual Paulista – Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal (SP). Os tratamentos foram: 0, 1, 2, 4 e 6 passadas de um trator, uma ao lado da outra perfazendo toda a superfície do solo, com quatro repetições. O delineamento experimental foi inteiramente casualizado para a condutividade hidráulica e, em esquema fatorial 5 x 2 para os atributos físicos. Foram coletadas amostras de solo nas faixas de profundidades de 0,02-0,05; 0,07-0,10 e 0,15-0,18 m, por ocasião da semeadura e após a colheita para determinação da densidade do solo, porosidade total, macro e microporosidade do solo. A condutividade hidráulica do solo foi determinada após a colheita. O tempo entre a semeadura e a colheita de soja foi suficiente para aumentar a compactação do solo apenas na condição de solo solto. A compactação do solo reduziu a condutividade hidráulica em relação a condição natural (mata) e a condição de solo solto, sendo que esta não foi reduzida, após a primeira passagem, com o aumento no número de passagens.  UNITERMOS: Densidade do solo, porosidade do solo, infiltração de água, soja.  BEUTLER, A. N.; CENTURION, J. F.; ROQUE, C. G.; SOUZA, Z. M. COMPACTION AND SOYBEAN GROW INFLUENCE ON PHYSICAL ATTRIBUTES AND  HYDRAULIC CONDUCTIVITY IN RED LATOSSOL SOIL   2 ABSTRACT  The purpose of this study was to determine the influence of compaction and soybean grow on physical attributes and hydraulic conductivity of a Red Latossol, medium texture soil. The experiment was carried out in the experimental farm at the Paulista State University  – Agricultural Science College, Jaboticabal – São Paulo state. The treatments were 0, 1, 2, 4 and 6 side-by-side tractor strides on the soil surface with four replications. The experimental design was completely randomized for hydraulic conductivity and a 5 x 2 factorial design for soil physical attributes. Soil samples have been collected at 0.02-0.05, 0.07-0.10 and 0.15-0.18 m depth at sowing season and after harvest in order to determine soil bulk density, total porosity, macro and micro porosity. Soil hydraulic conductivity was determined after harvest. The time period between the soybean sowing and harvesting was enough to increase soil compaction only in loose soil condition. Soil compaction reduced hydraulic conductivity compared to the natural (forest) and loose soil condition  KEYWORDS: Bulk density, soil porosity, water infiltration, soybean.


2019 ◽  
Vol 11 (4) ◽  
pp. 549
Author(s):  
Francisco de Assis Guedes Júnior ◽  
Deonir Secco ◽  
Luiz Antônio Zanão Júnior ◽  
Luciene Kazue Tokura ◽  
Marcos Felipe Leal Martins

The response to agricultural gypsum, as a conditioner of the root environment in depth, has been observed for most annual crops. These responses are attributed to the better distribution of roots of the crops in depth in the soil by the reduction of chemical impediments, caused by the exchangeable aluminum and calcium deficiency in these layers, which allows to the plants the use of greater volume of water when they occur summer. In this way, the objective of this study was to evaluate the effects of gypsum doses on physical-hydric attributes, root growth and soybean productivity. The experiment was conducted at the Agronomic Institute of Paraná (IAPAR) in Santa Tereza do Oeste-PR. The soil was classified as Typic Haplortox. Five doses of agricultural gypsum were evaluated: 0; 3; 6; 9 and 12 t ha-1, in outline randomized block design with six repetitions. Soil density, total porosity, macroporosity, microporosity and saturated hydraulic conductivity were evaluated at layers of 0.0-0.1; 0.1-0.2 and 0.2-0.3 m. Soybean productivity and root growth were also evaluated. Data were submitted to regression analysis. The physical attributes soil density, macroporosity and saturated hydraulic conductivity did not differ significantly with the application of the gypsum doses in the 0.0-0.1 and 0.2-0.3 m layers. However, in the 0.1-0.2 m layer, due to pressures imposed by the machines and agricultural implements deforming the soil, there were significant differences in the physical attributes of the density, macroporosity and saturated hydraulic conductivity. There was no significant difference in grain productivity and root growth of soybean.


2021 ◽  
Vol 9 (1) ◽  
pp. 3055-3061
Author(s):  
Eka Lupitasari ◽  
Rahayu Widyastuti ◽  
Heru Bagus Pulunggono

The difference in soil layer can affect heterotroph respiration that means CO2 fluxes from microbial decomposition in peatlands. Oil palm plants release root exudates transported to other places, i.e., shrub, by water movement, which can stimulate microbial activity. This study was conducted to learn the effects of differences of the soil layer and distance from the trunk in drainage peatland under oil palm plantation on total bacteria, fungi, cellulolytic bacteria, ligninolytic fungi, and heterotroph fluxes CO2, then compared to a shrub. Heterotroph respiration decreased with soil layer depth, where at the layer 0-20 cm released amount of CO2 as much 6.07 + 1.76, at 20-40 cm was 5.18 + 0.50, and at 40-60 cm 5.27 + 1.20 mg CO2 100 g-1 day-1, and tended higher than in shrub where a layer of 0-20 cm released 5.51 + 1.69, then decrease at 20-40 cm to 4.83 + 1.38, and at 40-60 cm 4.30 + 1.08 mg CO2 100 g-1 day-1. Total bacteria (107 CFU g-1) and fungi (105 CFU g-1) were higher than total cellulolytic bacteria (103 CFU g-1) and ligninolytic fungi (102 CFU g-1) in both under oil palm plantation and shrub. Organic acids affected the abundance of total bacteria and fungi but did not affect cellulolytic bacteria and ligninolytic fungi on both sites, as shown by a lower population and low cellulose and laccase enzymes. These findings showed that heterotroph CO2 flux tended higher in oil palm plantations and lignocellulolytic microbes are not the only source of heterotroph respiration.


2021 ◽  
Author(s):  
Brivaldo Gomes de Almeida ◽  
Bruno Campos Mantovanelli ◽  
Thiago Rodrigo Schossler ◽  
Fernando José Freire ◽  
Edivan Rodrigues de Souza ◽  
...  

<p>Geostatistical and multivariate techniques have been widely used to identify and characterize the soil spatial variability, as well as to detect possible relationships between soil properties and management. Besides that, these techniques provide information regarding the spatial and temporal structural changes of soils to support better decision-making processes and management practices. Although the Zona da Mata region is a reference for sugarcane production in the northeast of Brazil, only a few studies have been carried out to clarify the effects of different management on soil physical attributes by using geostatistical and multivariate techniques. Thus, the objectives of this study were: (I) to characterize the spatial distribution of soils physical attributes under rainfed and irrigated sugarcane cultivations; (II) to identify the minimum sampling for the determination of soil physical attributes; (III) to detect the effects of the different management on soil physical attributes based on the principal component analysis (PCA). The study was carried out in the agricultural area of the Carpina Sugarcane Experimental Station of the Federal Rural University of Pernambuco, 7º51’13”S, 35º14’10”W, characterized by a Typic Hapludult with sandy clay loam soil texture. The investigated plot, cultivated with sugarcane, included a rainfed and an irrigated treatment in which a sprinkler system was installed according to a 12x12m grid. The interval between consecutive watering was fixed in two days, whereas irrigation depth was calculated to replace crop evapotranspiration (ETc) and accounting for the effective precipitation of the period. Daily ETc was estimated based on crop coefficient and reference evapotranspiration (ETo) indirectly obtained through a class A evaporation pan. In both treatments, the soil spatial variability was determined according to a 56x32m grid, on 32 soil samples collected in the 0.0-0.1m soil layer, spaced 7x8m, and georeferenced with a global position system. The soil was physically characterized according to the following attributes: bulk density (BD), soil penetration resistance (SPR), macroporosity (Macro), mesoporosity (Meso), microporosity (Micro), total porosity (TP), saturated hydraulic conductivity (Ksat), gravimetric soil water content (SWCg), geometric mean diameter (GMD) and mean weight diameter (MWD). The results of the descriptive statistics showed that among the studied attributes, Ksat, SPR, and Macro presented higher CV values, equal to 63 and 69%, 35 and 40%, and 32 and 44%, under rainfed and irrigated conditions, respectively. The minimum sampling, adequate to characterize the different soil attributes, resulted in general smaller in the rainfed area, characterized by higher homogeneity. Thus, the GMD, SWCg (both with 2 points ha<sup>-1</sup>), and SPR (with 6 points ha<sup>-1</sup>) were identified as the soil physical attributes requiring the lowest sample density; on the other hand, MWD and Ksat, with 14 and 15 points ha<sup>-1</sup>, respectively, required the highest number of samples. Pearson’s correlation analysis evidenced that soil BD was the most influential physical attribute in the studied areas, with a significant and inverse effect in most of the investigated attributes. The geostatistical approach associated with the multivariate PCA provided to understand the relationships between the spatial distribution patterns associated with irrigated and rainfed management and soil physical properties.</p>


2018 ◽  
Vol 10 (8) ◽  
pp. 277
Author(s):  
Eduardo Antonio Neves dos Santos ◽  
Milton César Costa Campos ◽  
Jose Mauricio da Cunha ◽  
Fernando Gomes de Souza ◽  
Paulo Guilherme Salvador Wadt ◽  
...  

Understanding and quantifying the impact of soil management and use on its physical properties are essential to the development of sustainable agricultural systems. Thus, the aim of this study was to assess the effect of agricultural gypsum, soil scarification and succession planting on the physical attributes of dystrophic red-yellow latosol in Porto Velho, Rondônia state (RO), Brazil. The treatments used were absence and application of 2000 kg ha-1 of gypsum, absence and use of soil scarification, and three types of crop succession: SF (soybean/fallow), SMF (soybean/maize/fallow) and SMBF (soybean/maize/brachiaria/fallow). A randomized block design was used on eight blocks, for a 2 × 2 × 3 factorial arrangement. Soil parameters assessed were macroporosity, microporosity, total porosity, soil density, moisture content and penetration resistance. Data normality was assessed using the Shapiro-Wilk test. The data were submitted to analysis of variance and means were compared by the Scott-Knott test at 5% probability. The highest macroporosity and total porosity values were recorded in treatments with gypsum application and soil scarification. Penetration resistance was lower in the SMBF and SMF crop successions. There was no treatment effect on the soil density.


Bragantia ◽  
2017 ◽  
Vol 76 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Carina Sayuri Yamaguchi ◽  
Nilza Patrícia Ramos ◽  
Cristina Silva Carvalho ◽  
Adriana Marlene Moreno Pires ◽  
Cristiano Alberto de Andrade

ABSTRACT The objective of this study was to evaluate sugarcane straw decomposition and the potential of increasing soil carbon as a function of the initial biomass and vinasse addition to soil surface. The experimente consisted of incubation (240 days, in the dark, humidity equivalent to 70% of soil water retention capacity and average temperature of 28 °C) of Oxisol soil samples (0-20 cm soil layer) with straw added to soil surface at rates of 2; 4; 8; 16 and 24 t∙ha−1 and with or without vinasse addition (200 m3∙ha-1). The following variables were determined: released C-CO2, remaining straw dry matter, carbon straw and soil carbon concentration. The added biomass did not influence straw decomposition rate, but vinasse treatments provided rates between 70 and 94% compared to 68 to 75% for the ones without vinasse. The straw (16 and 24 t∙ha−1) decomposition rate increased between 14 and 35% due to vinasse addition, but the same behavior was not observed for released C-CO2. This result was explained by the twofold increase of soil carbon concentration, estimated by mass balance and confirmed analytically by the carbon concentration of soil samples. It was concluded that sugarcane straw decomposition, under no limiting conditions of humidity and temperature, did not depend on biomass initially added and that vinasse addition accelerated straw decomposition and potentialized carbon input into the soil.


2019 ◽  
Vol 31 (2) ◽  
pp. 285-299 ◽  
Author(s):  
Ioanna P. Kakabouki ◽  
Ioannis Roussis ◽  
Dimitra Hela ◽  
Panayiota Papastylianou ◽  
Antigolena Folina ◽  
...  

AbstractQuinoa is a gluten-free pseudocereal crop recognized for its exceptional nutritional properties. A 3-year field experiment was conducted to evaluate the influence of soil tillage and fertilization on root growth and productivity of quinoa. The experiment was laid out in a split-plot design with two replicates, two main plots [conventional (CT) and minimum tillage (MT)] and four sub-plots [fertilization treatments: untreated, inorganic fertilization with 100 (N1) and 200 kg N ha−1 (N2), and sheep manure]. Mean weight diameter (MWD) of soil aggregates, total porosity, organic matter and soil total nitrogen increased with the long-term fertilization with sheep manure. The major part of the roots (approximately 70%) is concentrated in the 0-30 cm soil layer. Root length density increased with increased rate of applied nitrogen, and a higher value (1.172 cm cm−3) was found in N2 plots. Additionally, higher root mass density (1.114 mg cm−3) was observed under MT. Plant height and dry weight were clearly affected by fertilization, with higher values obtained in N2 plots. Moreover, it was observed that quinoa cultivated under CT and N2 treatment produced a higher seed yield (2595 kg ha−1). As a conclusion, increasing the levels of applied nitrogen up to 200 kg N ha−1 improves root growth and consequently the yields of quinoa.


Sign in / Sign up

Export Citation Format

Share Document