scholarly journals Correlation of soil properties with weed ocurrence in sugarcane areas

2013 ◽  
Vol 31 (4) ◽  
pp. 765-775 ◽  
Author(s):  
L.L. Lousada ◽  
S.P. Freitas ◽  
C.R. Marciano ◽  
B.S. Esteves ◽  
R.A. Muniz ◽  
...  

Soil properties can influence weed community composition and weed density agricultural area. Knowing this relationship would allow to choose the best strategy for the control of such plants. This study aimed to investigate the correlation between weed density and chemical and physical attributes of soil in three areas (UCO, USC, and UPA) for commercial sugarcane cultivation in Campos dos Goytacazes, RJ. Grids of 40 m x 40 m were established in the areas, and soil samples were collected at the intersection points for physical and chemical analysis and evaluation of the soil seed bank (SSB), followed by a phyto-sociological survey of the weeds present. Samples were collected during two periods: February/March and June/July, 2010. SSB presented the greatest number of species per vegetation evaluated in the two sampling periods. Clay content had a positive effect leading to greater weed density in all areas (UCO, USC and UPA) in at least one of the densities (0-10 and 10-20 cm). On the other hand, sand content, when significant, presented a negative correlation with plant density in all the SSB areas analyzed. The pH negatively influenced the density of the species found through the phyto-sociological survey at USC and UPA. Cyperus rotundus, dominant in all areas, correlated positively with phosphorus, potassium, and clay content and negatively with pH and high sand content.

2012 ◽  
Vol 47 (4) ◽  
pp. 613-620 ◽  
Author(s):  
Domingos Guilherme Pellegrino Cerri ◽  
Paulo Sérgio Graziano Magalhães

The objective of this work was to evaluate the correlation between sugarcane yield and some physical and chemical attributes of soil. For this, a 42‑ha test area in Araras, SP, Brazil, was used. Soil properties were determined from samples collected at the beginning of the 2003/2004 harvest season, using a regular 100x100 m grid. Yield assessment was done with a yield monitor (Simprocana). Correlation analyses were performed between sugarcane yield and the following soil properties: pH, pH CaCl2, N, C, cone index, clay content, soil organic matter, P, K, Ca, Mg, H+AL, cation exchange capacity, and base saturation. Correlation coefficients were respectively ‑0.05, ‑0.29, 0.33, 0.41, ‑0.27, 0.22, 0.44, ‑0.24, trace, ‑0.06, 0.01, 0.32, 0.14, and 0.04. Correlations of chemical and physical attributes of soil with sugarcane yield are weak, and, per se, they are not able to explain sugarcane yield variation, which suggests that other variables, besides soil attributes, should be analysed.


2016 ◽  
Author(s):  
Bülent Turgut ◽  
Merve Ateş

Abstract. The aim of this study was to determine certain basic properties of soils in the Batumi delta, to determine the relationships of studied properties, and to identify differences with regards to these properties between different sampling sites in the delta that were selected based on the delta morphology. In this context, a total of 125 soil samples were collected from five different sampling sites, and the clay, silt and sand content of the samples were determined along with their mean weight diameter (MWD) values, aggregate stability (AS) values, amount of water retained under −33 kPa (FC) and −1500 kPa (WP) pressure and organic matter (OM) content. Correlation analysis indicated that clay content and OM were positively correlated with MWD, and OM was positively correlated with AS. However, the sand content was found to be negatively correlated with MWD. In addition, clay, silt and OM content were positive correlated with FC and WP. Variance analysis results determined statistically significant differences between the sampling sites with respect to all of the evaluated properties. The active delta section of the study area was characterized by high sand content, while the lower delta plain was characterized by high OM and AS values, and the upper delta plain was characterized by high WMD values, high FC and WP moisture content levels and high clay and silt content. In conclusion, it was demonstrated that the examined properties were significantly affected by the different morphological positions and usages of these different areas. These results may help with the management of agricultural lands in the Batumi delta, which has never been studied before.


1991 ◽  
Vol 71 (1) ◽  
pp. 127-136 ◽  
Author(s):  
J. R. Lawrence ◽  
J.J. Germida

Heterotrophic and autotrophic sulfur-oxidizing populations in 35 Saskatchewan agricultural soils were enumerated. These populations included heterotrophs that produce thiosulfate and or sulfate during elemental sulfur (S°) oxidation, heterotrophic thiosulfate oxidizers, and autotrophic thiosulfate oxidizers. Populations of Thiobacillus thiooxidans and T. ferrooxidans were not detected in any of the soils tested. Heterotrophs that oxidized S° to thiosulfate as the major oxyanion were the most abundant oxidizers enumerated (107–108 cells g−1) and were found in all soils. Autotrophic thiosulfate-oxidizers were detected in 10 of the soils surveyed. Heterotrophic S° and thiosulfate-oxidizing populations exhibited positive trends with soil pH, total-S, hydriodic reducible-S, and clay content, whereas populations of autotrophic thiosulfate oxidizers were negatively correlated with these factors and positively related to sand content and increasing C:S ratios. In soils containing autotrophic thiosulfate oxidizers the amount of thiosulfate relative to sulfate detected was reduced although no effect on S° oxidation rate was detected. Amendment of 15 selected agricultural soils with 0.5% S° significantly reduced total heterotrophic populations, whereas autotrophic thiosulfate oxidizers increased from undetectable levels to 104 cells g−1. Therefore most Saskatchewan soils contain abundant populations of heterotrophic S° oxidizers, and populations of autotrophs that respond to S° applications. Key words: Sulfur oxidation, autotrophic sulfur oxidizers, heterotrophic sulfur oxidizers, soil properties


Author(s):  
Marcos Renan Besen ◽  
Michel Esper Neto ◽  
Bruno Maia Abdo Rahmen Cassim ◽  
Evandro Antonio Minato ◽  
Tadeu Takeyoshi Inoue ◽  
...  

2021 ◽  
Vol 13 (7) ◽  
pp. 3617
Author(s):  
Agnieszka Medyńska-Juraszek ◽  
Agnieszka Latawiec ◽  
Jolanta Królczyk ◽  
Adam Bogacz ◽  
Dorota Kawałko ◽  
...  

Biochar application is reported as a method for improving physical and chemical soil properties, with a still questionable impact on the crop yields and quality. Plant productivity can be affected by biochar properties and soil conditions. High efficiency of biochar application was reported many times for plant cultivation in tropical and arid climates; however, the knowledge of how the biochar affects soils in temperate climate zones exhibiting different properties is still limited. Therefore, a three-year-long field experiment was conducted on a loamy Haplic Luvisol, a common arable soil in Central Europe, to extend the laboratory-scale experiments on biochar effectiveness. A low-temperature pinewood biochar was applied at the rate of 50 t h−1, and maize was selected as a tested crop. Biochar application did not significantly impact the chemical soil properties and fertility of tested soil. However, biochar improved soil physical properties and water retention, reducing plant water stress during hot dry summers, and thus resulting in better maize growth and higher yields. Limited influence of the low-temperature biochar on soil properties suggests the crucial importance of biochar-production technology and biochar properties on the effectiveness and validity of its application in agriculture.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 544
Author(s):  
Jetse J. Stoorvogel ◽  
Vera L. Mulder

Despite the increased usage of global soil property maps, a proper review of the maps rarely takes place. This study aims to explore the options for such a review with an application for the S-World global soil property database. Global soil organic carbon (SOC) and clay content maps from S-World were studied at two spatial resolutions in three steps. First, a comparative analysis with an ensemble of seven datasets derived from five other global soil databases was done. Second, a validation of S-World was done with independent soil observations from the WoSIS soil profile database. Third, a methodological evaluation of S-world took place by looking at the variation of soil properties per soil type and short distance variability. In the comparative analysis, S-World and the ensemble of other maps show similar spatial patterns. However, the ensemble locally shows large discrepancies (e.g., in boreal regions where typically SOC contents are high and the sampling density is low). Overall, the results show that S-World is not deviating strongly from the model ensemble (91% of the area falls within a 1.5% SOC range in the topsoil). The validation with the WoSIS database showed that S-World was able to capture a large part of the variation (with, e.g., a root mean square difference of 1.7% for SOC in the topsoil and a mean difference of 1.2%). Finally, the methodological evaluation revealed that estimates of the ranges of soil properties for the different soil types can be improved by using the larger WoSIS database. It is concluded that the review through the comparison, validation, and evaluation provides a good overview of the strengths and the weaknesses of S-World. The three approaches to review the database each provide specific insights regarding the quality of the database. Specific evaluation criteria for an application will determine whether S-World is a suitable soil database for use in global environmental studies.


1988 ◽  
Vol 68 (2) ◽  
pp. 209-221 ◽  
Author(s):  
C. Chang ◽  
T. G. SOMMERFELDT ◽  
T. ENTZ

Knowledge of the variability of soluble salt content in saline soils can assist in designing experiments or developing management practices to manage and reclaim salt-affected soils. Geostatistical theory enables the use of spatial dependence of soil properties to obtain information about locations in the field that are not actually measured, but classical statistical methods do not consider spatial correlation and the relative location of samples. A study was carried out using both classical statistics and geostatistical methods to delineate salinity and sand content and their variability in a small area of irrigated saline soil. Soil samples were taken for electrical conductivity (EC) and particle size distribution determinations at 64 locations from a 20 × 25-m area, on an 8 × 8-grid pattern at depth intervals of 0–15, 15–30, 30–60, 60–90 and 90–120 cm. The high coefficient of variation (CV) values of both EC and sand content indicated that the soil was highly variable with respect to these soil properties. The semivariograms of sand content of the first two depth intervals and EC of all the depth intervals showed strong spatial relationships. Contour maps, generated by block kriging, based on spatial relationships provide estimated variances which are smaller than general variances calculated by the classical statistical method. The interpolated EC results by both ordinary and universal kriging methods were compared and were almost identical. The kriged maps can provide information useful for designing experiments and for determining soil sampling strategy. Key words: Salinity, texture, variability, geostatistics, semivariogram, kriging


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Glécio Machado Siqueira ◽  
Jorge Dafonte Dafonte ◽  
Montserrat Valcárcel Armesto ◽  
Ênio Farias França e Silva

The apparent soil electrical conductivity (ECa) was continuously recorded in three successive dates using electromagnetic induction in horizontal (ECa-H) and vertical (ECa-V) dipole modes at a 6 ha plot located in Northwestern Spain. One of the ECadata sets was used to devise an optimized sampling scheme consisting of 40 points. Soil was sampled at the 0.0–0.3 m depth, in these 40 points, and analyzed for sand, silt, and clay content; gravimetric water content; and electrical conductivity of saturated soil paste. Coefficients of correlation between ECaand gravimetric soil water content (0.685 for ECa-V and 0.649 for ECa-H) were higher than those between ECaand clay content (ranging from 0.197 to 0.495, when different ECarecording dates were taken into account). Ordinary and universal kriging have been used to assess the patterns of spatial variability of the ECadata sets recorded at successive dates and the analyzed soil properties. Ordinary and universal cokriging methods have improved the estimation of gravimetric soil water content using the data of ECaas secondary variable with respect to the use of ordinary kriging.


Author(s):  
Vítězslav Vlček ◽  
Miroslav Pohanka

Soil samples (n = 11) were collected in the chernozem areas of the Czech Republic (the Central Europe) from the topsoil and used as representative samples. All sampling areas have been used for agricultural purposes (arable soil) and they were selected as typical representatives of agricultural soil. These samples represented the soil with same genesis (to reduction differencies between soil types) but with different soil properties (physical and chemical). Complete chemical and physical analyses were made for confirmation of copper adsorption on solid phase: we analysed the particle size distribution, content of oxidizable carbon (Cox), the cation exchange capacity (CEC), supply of exchange calcium, magnesium, sodium, phosphorus and potassium, soil reaction and the total supply of Fe, Al, Mn, Ca, Mg, K, P and N. The strongest simple correlation between analysed soil properties and copper concentration had content of available magnesium (r = 0.44) and available phosphorus (r = −0.51). In the case of multiple correlations (i. e. collective influence of multiple soil properties) had the strongest influence combination of clay, soil reaction, total content of phosphorus, available magnesium and available phosphorus. The main influence of phosphorus and magnesium is evident. We suppose that copper and phosphorus enter into specific complex. Influence of these five soil properties can explain 92.7 % (r = 0.927) changes in the content of copper changes in the experiment.


2014 ◽  
Vol 11 (6) ◽  
pp. 9667-9695 ◽  
Author(s):  
C. M. White ◽  
A. R. Kemanian ◽  
J. P. Kaye

Abstract. Carbon (C) saturation theory suggests that soils have a~limited capacity to stabilize organic C and that this capacity may be regulated by intrinsic soil properties such as clay content and mineralogy. While C saturation theory has advanced our ability to predict soil C stabilization, we only have a weak understanding of how C saturation affects N cycling. In biogeochemical models, C and N cycling are tightly coupled, with C decomposition and respiration driving N mineralization. Thus, changing model structures from non-saturation to C saturation dynamics can change simulated N dynamics. Carbon saturation models proposed in the literature calculate a theoretical maximum C storage capacity of saturating pools based on intrinsic soil properties, such as clay content. The extent to which current C stocks fill the storage capacity of the pool is termed the C saturation ratio, and this ratio is used to regulate either the efficiency or the rate of C transfer from donor to receiving pools. In this study, we evaluated how the method of implementing C saturation and the number of pools in a model affected net N mineralization from decomposing plant residues. In models that use the C saturation ratio to regulate transfer efficiency, C saturation affected N mineralization, while in those in which the C saturation ratio regulates transfer rates, N mineralization was independent of C saturation. When C saturation ratio regulates transfer efficiency, as the saturation ratio increases, the threshold C : N ratio at which positive net N mineralization occurs also increases because more of the C in the residue is respired. In a single-pool model where C saturation ratio regulated the transfer efficiency, predictions of N mineralization from residue inputs were unrealistically high, missing the cycle of N immobilization and mineralization typically seen after the addition of high C : N inputs to soils. A more realistic simulation of N mineralization was achieved simply by adding a second pool to the model to represent short-term storage and turnover of C and N in microbial biomass. These findings increase our understanding of how to couple C saturation and N mineralization models, while offering new hypotheses about the relationship between C saturation and N mineralization that can be tested empirically.


Sign in / Sign up

Export Citation Format

Share Document