scholarly journals Correlation of physical and chemical attributes of soil with sugarcane yield

2012 ◽  
Vol 47 (4) ◽  
pp. 613-620 ◽  
Author(s):  
Domingos Guilherme Pellegrino Cerri ◽  
Paulo Sérgio Graziano Magalhães

The objective of this work was to evaluate the correlation between sugarcane yield and some physical and chemical attributes of soil. For this, a 42‑ha test area in Araras, SP, Brazil, was used. Soil properties were determined from samples collected at the beginning of the 2003/2004 harvest season, using a regular 100x100 m grid. Yield assessment was done with a yield monitor (Simprocana). Correlation analyses were performed between sugarcane yield and the following soil properties: pH, pH CaCl2, N, C, cone index, clay content, soil organic matter, P, K, Ca, Mg, H+AL, cation exchange capacity, and base saturation. Correlation coefficients were respectively ‑0.05, ‑0.29, 0.33, 0.41, ‑0.27, 0.22, 0.44, ‑0.24, trace, ‑0.06, 0.01, 0.32, 0.14, and 0.04. Correlations of chemical and physical attributes of soil with sugarcane yield are weak, and, per se, they are not able to explain sugarcane yield variation, which suggests that other variables, besides soil attributes, should be analysed.

2016 ◽  
Vol 51 (9) ◽  
pp. 1349-1358 ◽  
Author(s):  
Diego Silva Siqueira ◽  
José Marques Júnior ◽  
Daniel De Bortoli Teixeira ◽  
Sammy Sidney Rocha Matias ◽  
Livia Arantes Camargo ◽  
...  

Abstract The objective of this work was to evaluate the use of magnetic susceptibility for characterizing the spatial variability of soil attributes and identifying areas with different potentials for sugarcane (Saccharum spp.) production. Samples were collected at 110 points (1 per 7 ha) in the layers of 0.00-0.20 and 0.20-0.40 m, to determine the magnetic susceptibility and physical and chemical attributes of the soil. Fiber content, sucrose polarization (POL), and sugarcane yield were determined in 33 points. The spatial variability model for magnetic susceptibility was 63 and 22% more accurate in delimiting soil potential for sugarcane production than soil physical and chemical attributes at the 0.0-0.2 and 0.2-0.4-m layers, respectively. The spatial variability map for magnetic susceptibility was strongly correlated with clay (0.83 and 0.89, respectively, for the layers) and sand contents (-0.84 and -0.88); moderately correlated with organic matter (-0.25 and -0.35), sum of bases (-0.46 and 0.37), cation exchange capacity (0.22 and 0.47), pH (-0.52 and 0.13), and POL (0.43 and 0.53); and weakly correlated with sugarcane yield (0.26 and 0.23). Magnetic susceptibility can be used to characterize the spatial variability of soil attributes and to identify areas with different potentials for sugarcane production.


2013 ◽  
Vol 31 (4) ◽  
pp. 765-775 ◽  
Author(s):  
L.L. Lousada ◽  
S.P. Freitas ◽  
C.R. Marciano ◽  
B.S. Esteves ◽  
R.A. Muniz ◽  
...  

Soil properties can influence weed community composition and weed density agricultural area. Knowing this relationship would allow to choose the best strategy for the control of such plants. This study aimed to investigate the correlation between weed density and chemical and physical attributes of soil in three areas (UCO, USC, and UPA) for commercial sugarcane cultivation in Campos dos Goytacazes, RJ. Grids of 40 m x 40 m were established in the areas, and soil samples were collected at the intersection points for physical and chemical analysis and evaluation of the soil seed bank (SSB), followed by a phyto-sociological survey of the weeds present. Samples were collected during two periods: February/March and June/July, 2010. SSB presented the greatest number of species per vegetation evaluated in the two sampling periods. Clay content had a positive effect leading to greater weed density in all areas (UCO, USC and UPA) in at least one of the densities (0-10 and 10-20 cm). On the other hand, sand content, when significant, presented a negative correlation with plant density in all the SSB areas analyzed. The pH negatively influenced the density of the species found through the phyto-sociological survey at USC and UPA. Cyperus rotundus, dominant in all areas, correlated positively with phosphorus, potassium, and clay content and negatively with pH and high sand content.


Author(s):  
Vítězslav Vlček ◽  
Miroslav Pohanka

Soil samples (n = 11) were collected in the chernozem areas of the Czech Republic (the Central Europe) from the topsoil and used as representative samples. All sampling areas have been used for agricultural purposes (arable soil) and they were selected as typical representatives of agricultural soil. These samples represented the soil with same genesis (to reduction differencies between soil types) but with different soil properties (physical and chemical). Complete chemical and physical analyses were made for confirmation of copper adsorption on solid phase: we analysed the particle size distribution, content of oxidizable carbon (Cox), the cation exchange capacity (CEC), supply of exchange calcium, magnesium, sodium, phosphorus and potassium, soil reaction and the total supply of Fe, Al, Mn, Ca, Mg, K, P and N. The strongest simple correlation between analysed soil properties and copper concentration had content of available magnesium (r = 0.44) and available phosphorus (r = −0.51). In the case of multiple correlations (i. e. collective influence of multiple soil properties) had the strongest influence combination of clay, soil reaction, total content of phosphorus, available magnesium and available phosphorus. The main influence of phosphorus and magnesium is evident. We suppose that copper and phosphorus enter into specific complex. Influence of these five soil properties can explain 92.7 % (r = 0.927) changes in the content of copper changes in the experiment.


2018 ◽  
Vol 10 (11) ◽  
pp. 190
Author(s):  
Ana Karenina Fernandes de Sousa Ribeiro ◽  
Jeane Cruz Portela ◽  
Rafael Oliveira Batista ◽  
Carolina Malala Martins Souza ◽  
Joseane Dunga da Costa ◽  
...  

The semiarid region is extremely fragile to anthropogenic actions. Thus, the objective of this study is to evaluate the physical and chemical attributes of soils with different agricultural uses. The research was carried out in the municipality of Governador Dix-Sept Rosado. Fertility and physical analyses were performed. The results were interpreted by multivariate analysis. The soils that presented a eutrophic character were influenced by lithology. In the Cambissolo (Haplustepts), there was an increase in the limits of liquidity and plasticity due to the increase of the clay fraction and total organic carbon. By the particle size analysis, the profiles presented variations in textural classes. We concluded that the physical attributes moisture, liquidity limit, plasticity limit, clay plasticity index, thin sand and the chemical attributes pH, (H + Al), V and PST were the most sensitive for the distinction of environments. The studied areas presented acidity reactions to alkalinity with presence of Al3+, (H + Al) and high salinity.


2020 ◽  
Vol 13 (10) ◽  
pp. 61
Author(s):  
A. T. Martins-Oliveira ◽  
L. E. S. Stefanello ◽  
T. M. Santos ◽  
V. R. Pinto ◽  
C. A. Souza ◽  
...  

The fluvial dynamics corresponds to the natural changes of river channels that can influence the water energy, type and morphology of the gutter, geological structure and soil types. In this context, the type of soil present on the banks of the rivers stands out, which due to their morphological, physical and chemical characteristics, will offer greater or less resistance to marginal erosive processes. Whit this study, we aim to verify the contribution of soil morphological, physical and chemical attributes in the natural dynamics of the right bank of the Paraguay River. The studied area is located in the Pantanal Matogrossense, sub-region of Cáceres, and comprises the right bank of the Paraguay River, in the region of Baia da Campina, approximately 10 km away from the municipality of Cáceres, Mato Grosso, Brazil. We carry out morphological, granulometric and chemical description of the soil. The data were tabulated in a spreadsheet, being subsequently analyzed and discussed. The vegetation occurring in the study area is of the seasonal / cerrado and alluvial forests type, with the presence of low and semi-shrub vegetation. We classified the soil profile in the section studied as Fluvic Tb Endoeutrophic Neosol, presenting medium texture and, in general, high levels of sand and low levels of clay. The values referring to the effective cation exchange capacity (CTC) obtained in this study, were classified from low to very good, a characteristic that allows the existence of low and semi-shrubby vegetation, which contributes to the resistance to erosive processes, even that the soil has a low presenting resistance physical structure.


2000 ◽  
Vol 35 (2) ◽  
pp. 413-421 ◽  
Author(s):  
LUÍS REYNALDO FERRACCIÚ ALLEONI ◽  
OTÁVIO ANTONIO DE CAMARGO

Boron adsorption was studied in five representative soils (Rhodic Hapludox, Arenic Paleudalf and three Typic Hapludox) from the State of São Paulo, Brazil. Adsorption was higher in the clayey Oxisols, followed by the Alfisol and the coarser Oxisols. Calcium carbonate promoted an increase in the amount of adsorbed boron in all soils, with the most pronounced effect in the coarser-textured Oxisols. High correlation coefficients were found between adsorbed boron and clay and amorphous aluminum oxide contents and specific surface area (r = 0.79, 0.76 and 0.73, respectively, p < 0.01). Clay content, free aluminum oxide, and hot CaCl2 (0.01 mol L-1)-extracted boron explained 93% of the variation of adsorbed boron. Langmuir and Freundlich isotherms fitted well to the adsorbed data, and highest values for maximum boron adsorption were found in clayey soils, which were significantly correlated with contents of total, free and amorphous iron and aluminum oxides, as well with the physical attributes. Ninety four percent of the variation in the maximum adsorption could be related to the free iron content.


2008 ◽  
Vol 53 (No. 5) ◽  
pp. 225-238 ◽  
Author(s):  
N. Finžgar ◽  
P. Tlustoš ◽  
D. Leštan

Sequential extractions, metal uptake by <i>Taraxacum officinale</i>, Ruby&rsquo;s physiologically based extraction test (PBET) and toxicity characteristic leaching procedure (TCLP), were used to assess the risk of Pb and Zn in contaminated soils, and to determine relationships among soil characteristics, heavy metals soil fractionation, bioavailability and leachability. Regression analysis using linear and 2nd order polynomial models indicated relationships between Pb and Zn contamination and soil properties, although of small significance (<i>P</i> < 0.05). Statistically highly significant correlations (<i>P</i> < 0.001) were obtained using multiple regression analysis. A correlation between soil cation exchange capacity (CEC) and soil organic matter and clay content was expected. The proportion of Pb in the PBET intestinal phase correlated with total soil Pb and Pb bound to soil oxides and the organic matter fraction. The leachable Pb, extracted with TCLP, correlated with the Pb bound to carbonates and soil organic matter content (<i>R</i><sup>2</sup> = 69%). No highly significant correlations (<i>P</i> < 0.001) for Zn with soil properties or Zn fractionation were obtained using multiple regression.


Soil Systems ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 52
Author(s):  
Gustavo M. Vasques ◽  
Hugo M. Rodrigues ◽  
Maurício R. Coelho ◽  
Jesus F. M. Baca ◽  
Ricardo O. Dart ◽  
...  

Mapping soil properties, using geostatistical methods in support of precision agriculture and related activities, requires a large number of samples. To reduce soil sampling and measurement time and cost, a combination of field proximal soil sensors was used to predict and map laboratory-measured soil properties in a 3.4-ha pasture field in southeastern Brazil. Sensor soil properties were measured in situ on a 10 × 10-m dense grid (377 samples) using apparent electrical conductivity meters, apparent magnetic susceptibility meter, gamma-ray spectrometer, water content reflectometer, cone penetrometer, and portable X-ray fluorescence spectrometer (pXRF). Soil samples were collected on a 20 × 20-m thin grid (105 samples) and analyzed in the laboratory for organic C, sum of bases, cation exchange capacity, clay content, soil volumetric moisture, and bulk density. Another 25 samples collected throughout the area were also analyzed for the same soil properties and used for independent validation of models and maps. To test whether the combination of sensors enhances soil property predictions, stepwise multiple linear regression (MLR) models of the laboratory soil properties were derived using individual sensor covariate data versus combined sensor data—except for the pXRF data, which were evaluated separately. Then, to test whether a denser grid sample boosted by sensor-based soil property predictions enhances soil property maps, ordinary kriging of the laboratory-measured soil properties from the thin grid was compared to ordinary kriging of the sensor-based predictions from the dense grid, and ordinary cokriging of the laboratory properties aided by sensor covariate data. The combination of multiple soil sensors improved the MLR predictions for all soil properties relative to single sensors. The pXRF data produced the best MLR predictions for organic C content, clay content, and bulk density, standing out as the best single sensor for soil property prediction, whereas the other sensors combined outperformed the pXRF sensor for the sum of bases, cation exchange capacity, and soil volumetric moisture, based on independent validation. Ordinary kriging of sensor-based predictions outperformed the other interpolation approaches for all soil properties, except organic C content, based on validation results. Thus, combining soil sensors, and using sensor-based soil property predictions to increase the sample size and spatial coverage, leads to more detailed and accurate soil property maps.


1966 ◽  
Vol 46 (2) ◽  
pp. 155-160 ◽  
Author(s):  
G. R. Saini ◽  
A. A. MacLean ◽  
J. J. Doyle

The relationship of the mean weight diameter of water-stable aggregates to certain soil properties (clay, organic matter, free iron, free aluminum, and polysaccharide contents) and the relationship of the increase in aggregation caused by VAMA to the same properties of 24 New Brunswick soils were evaluated by correlation and regression analyses.Simple correlation coefficients relating aggregation to soil properties indicated that organic matter (r = 0.627), polysaccharides (r = 0.602), and aluminum (r = 0.679) were the most important factors. However, when the influence of each factor was separated by partial correlation, the coefficients were not significant. On the other hand, the combined effects of all factors as indicated by the multiple correlation coefficient (r = 0.743) was significant at the 1% level. The effect of the same soil properties on response to VAMA, as shown by increase in mean weight diameter, indicated that clay exerted the greatest influence. The relationship with other factors was nonsignificant.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yao-Tsung Chang ◽  
Zeng-Yei Hseu ◽  
Franz Zehetner

This study compared the extractability of Cd, Cu, Ni, Pb, and Zn by 8 extraction protocols for 22 representative rural soils in Taiwan and correlated the extractable amounts of the metals with their uptake by Chinese cabbage for developing an empirical model to predict metal phytoavailability based on soil properties. Chemical agents in these protocols included dilute acids, neutral salts, and chelating agents, in addition to water and the Rhizon soil solution sampler. The highest concentrations of extractable metals were observed in the HCl extraction and the lowest in the Rhizon sampling method. The linear correlation coefficients between extractable metals in soil pools and metals in shoots were higher than those in roots. Correlations between extractable metal concentrations and soil properties were variable; soil pH, clay content, total metal content, and extractable metal concentration were considered together to simulate their combined effects on crop uptake by an empirical model. This combination improved the correlations to different extents for different extraction methods, particularly for Pb, for which the extractable amounts with any extraction protocol did not correlate with crop uptake by simple correlation analysis.


Sign in / Sign up

Export Citation Format

Share Document