scholarly journals Nutrient cycling in a RRIM 600 clone rubber plantation

2003 ◽  
Vol 60 (2) ◽  
pp. 353-357 ◽  
Author(s):  
Marcos Roberto Murbach ◽  
Antonio Enedi Boaretto ◽  
Takashi Muraoka ◽  
Euclides Caxambu Alexandrino de Souza

Few reports have been presented on nutrient cycling in rubber tree plantations (Hevea brasiliensis Muell. Arg.). This experiment was carried out to evaluate: the effect of K rates on the amount of nutrients transfered to the soil in a 13-year old Hevea brasilensis RRIM 600 clone plantation, nutrient retranslocation from the leaves before falling to the soil, and nutrient loss by dry rubber export. The experiment started in 1998 and potassium was applied at the rates of 0, 40, 80 and 160 kg ha-1 of K2O under the crowns of 40 rubber trees of each plot. Literfall collectors, five per plot, were randomly distributed within the plots under the trees. The accumulated literfall was collected monthly during one year. The coagulated rubber latex from each plot was weighed, and samples were analyzed for nutrient content. Increasing K fertilization rates also increased the K content in leaf literfall. Calcium and N were the most recycled leaf nutrients to the soil via litterfall. Potassium, followed by P were the nutrients with the highest retranslocation rates. Potassium was the most exported nutrient by the harvested rubber, and this amount was higher than that transfered to the soil by the leaf literfall.

2018 ◽  
Vol 23 (8) ◽  
pp. 1578 ◽  
Author(s):  
Elizeu Castro ◽  
Felipe Nuvoloni ◽  
Reinaldo Feres

Rubber trees, Hevea brasiliensis, are the main source of latex in the world, being cultivated in several states in Brazil. Calacarus heveae Feres and Tenuipalpus heveae Baker are considered the main pest mites of this crop. In this study, we evaluated the population dynamics of these two phytophagous species and of the most common predatory species during a one-year period on crops of rubber tree clones FDR 5788, CDC 312 and PMB 01, located in Igrapiúna, State of Bahia, northeastern Brazil. The results indicate that outbreaks of C. heveae and T. heveae occur from January to May. Population densities vary among clones, being lower on FDR 5788. Amblyseius perditus Chant and Baker (Phytoseiidae), Parapronematus sp. (Iolinidae) and Agistemus pallinii Matioli, Tavares and Pallini (Stigmaeidae) were the most abundant and frequently encountered predacious species. The population dynamics of these predatory species were related to the abundance of the phytophagous mites. However, the efficacy of these predators to mitigate infestations of phytophagous mites under natural conditions is unresolved due to the high reproductive rate of the phytophagous species.


2021 ◽  
Vol 7 (6) ◽  
pp. 485
Author(s):  
Boxun Li ◽  
Yang Yang ◽  
Jimiao Cai ◽  
Xianbao Liu ◽  
Tao Shi ◽  
...  

Rubber tree Corynespora leaf fall (CLF) disease, caused by the fungus Corynespora cassiicola, is one of the most damaging diseases in rubber tree plantations in Asia and Africa, and this disease also threatens rubber nurseries and young rubber plantations in China. C. cassiicola isolates display high genetic diversity, and virulence profiles vary significantly depending on cultivar. Although one phytotoxin (cassicolin) has been identified, it cannot fully explain the diversity in pathogenicity between C. cassiicola species, and some virulent C. cassiicola strains do not contain the cassiicolin gene. In the present study, we report high-quality gapless genome sequences, obtained using short-read sequencing and single-molecule long-read sequencing, of two Chinese C. cassiicola virulent strains. Comparative genomics of gene families in these two stains and a virulent CPP strain from the Philippines showed that all three strains experienced different selective pressures, and metabolism-related gene families vary between the strains. Secreted protein analysis indicated that the quantities of secreted cell wall-degrading enzymes were correlated with pathogenesis, and the most aggressive CCP strain (cassiicolin toxin type 1) encoded 27.34% and 39.74% more secreted carbohydrate-active enzymes (CAZymes) than Chinese strains YN49 and CC01, respectively, both of which can only infect rubber tree saplings. The results of antiSMASH analysis showed that all three strains encode ~60 secondary metabolite biosynthesis gene clusters (SM BGCs). Phylogenomic and domain structure analyses of core synthesis genes, together with synteny analysis of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) gene clusters, revealed diversity in the distribution of SM BGCs between strains, as well as SM polymorphisms, which may play an important role in pathogenic progress. The results expand our understanding of the C. cassiicola genome. Further comparative genomic analysis indicates that secreted CAZymes and SMs may influence pathogenicity in rubber tree plantations. The findings facilitate future exploration of the molecular pathogenic mechanism of C. cassiicola.


2021 ◽  
Author(s):  
Stephanie M. Juice ◽  
Paul G. Schaberg ◽  
Alexandra M. Kosiba ◽  
Carl E. Waite ◽  
Gary J. Hawley ◽  
...  

Abstract The varied and wide-reaching impacts of climate change are occurring across heterogeneous landscapes. Despite the known importance of soils in mediating biogeochemical nutrient cycling, there is little experimental evidence of how soil characteristics may shape ecosystem response to climate change. Our objective was to clarify how soil characteristics modify the impact of climate changes on carbon and nutrient leaching losses in temperate forests. We therefore conducted a field-based mesocosm experiment with replicated warming and snow exclusion treatments on two soils in large (2.4 m diameter), in-field forest sapling mesocosms. We found that nutrient loss responses to warming and snow exclusion treatments frequently varied substantially by soil type. Indeed, in some cases, soil type nullified the impact of a climate treatment. For example, warming and snow exclusion increased nitrogen (N) losses on fine soils by up to four times versus controls, but these treatments had no impact on coarse soils. Generally, the coarse textured soil, with its lower soil-water holding capacity, had higher nutrient losses (e.g., 12-17 times more total N loss from coarse than fine soils), except in the case of phosphate, which had consistently higher losses (23-58%) from the finer textured soil. Furthermore, the mitigation of nutrient loss by increasing tree biomass varied by soil type and nutrient. Our results suggest that potentially large biogeochemical responses to climate change are strongly mediated by soil characteristics, providing further evidence of the need to consider soil properties in Earth system models for improving nutrient cycling and climate projections.


2008 ◽  
Vol 255 (7) ◽  
pp. 2347-2361 ◽  
Author(s):  
J.B. Wauters ◽  
S. Coudert ◽  
E. Grallien ◽  
M. Jonard ◽  
Q. Ponette

1985 ◽  
Vol 63 (12) ◽  
pp. 2138-2143 ◽  
Author(s):  
G. R. Shaver ◽  
M. J. Lechowicz

Canonical variates analysis was used to compare the effects of fertilization on the concentrations of five mineral elements (N, P, K, Ca, and Mg) in young shoot tissues of six tundra plant species of three different growth forms. There were two specific objectives: (i) to determine whether it was possible to describe meaningful dose–response relationships in a multivariate response to fertilization, and (ii) to determine the multivariate effect of N plus P fertilization in comparison with the effects of N or P added alone. The results showed that low levels of N–P–K fertilization caused a shift in multivariate nutrient content that was intermediate between the control values and the shift caused by high fertilization, and in the same direction as the latter. In a June harvest, the effect of N plus P fertilization was very similar to the effect of N fertilization alone. However, in August the N plus P effect was dominated by the response to P alone. In all of the analyses, the fundamental similarities and differences among unfertilized plants of each species and growth form were maintained under fertilization.


1999 ◽  
Vol 50 (2) ◽  
pp. 217 ◽  
Author(s):  
D. O. Huett ◽  
S. C. Morris

Nutrient leaching loss, plant growth, and nutrient uptake of 4-week (transplanting to sale) ground-cover species were investigated under a range of leaching conditions and with different sources of a controlled- release fertiliser (CRF), Osmocote NPK (3–4 month) (Osm). Osm was applied pre-planting at a rate equivalent to 800 g N/m3 to pots containing sand, and composted pinebark and hardwood sawdust medium that had received nutrient amendment during formulation. Two experiments were conducted in a glasshouse over summer–autumn where irrigation treatments produced defined leachate volumes. In Expt 1, leachate volumes of <5, 50, and 200 mL every 2 days each received an additional single heavy leaching event of 400 mL after 1, 2, or 3 weeks. In Expt 2, the 3 leachate volumes were each fertilised with new Osm (a newly purchased Osm) or old Osm (a 2-year-old source), where both of these sources contained 0.5–1.5% visibly damaged prills; and damaged Osm, where damaged prills were used exclusively. In both experiments, increasing leachate volume increased (P < 0.001) leaching of N (nitrate + ammonium), P, K, Ca, and Mg. In Expt 1, leaching was highest (P < 0.01) when the heavy leaching event occurred after 2 or 3 weeks for N and after 2 weeks for P. When damaged Osm was used, N, P, and K loss was 3–15 times higher (P < 0.001) than from new and old Osm (98.5–99.5% undamaged). The highest leaching loss of N, P, K, Ca, and Mg occurred in the first week after potting up, with damaged prills at highest leaching volume. Increasing leachate volume (in the presence of a heavy leaching event) reduced (P < 0.001) electrical conductivity (EC) of potting medium after 4 weeks from 1.02 to 0.54 dS/m. Damaged prills reduced (P < 0.001) EC at the high leachate volume in relation to new Osm (2.38 v. 0.29 dS/m). Treatments that increased (P < 0.05) nutrient leaching generally reduced (P < 0.05) nutrient concentrations in shoots and depressed the growth of some plant species. Shoot growth of 2 of 5 species was reduced (P < 0.001) at the highest leachate volume with an additional heavy leaching event in Week 1 or 2, and root growth of all but the slowest growing species declined with increasing leachate volume. Damaged prills reduced (P < 0.001) shoot growth of 2 of the 5 ground-cover species. This study demonstrated that excessive leaching and the use of damaged prills for containerised nursery plants fertilised with CRF results in high nutrient loss, low residual nutrient content, reduced nutrient uptake in shoots, and reduced shoot growth of some species.


Soil Research ◽  
1994 ◽  
Vol 32 (6) ◽  
pp. 1275 ◽  
Author(s):  
RK Misra

Errors in nutrient analyses of roots may arise from soil adhering to roots, the method of root separation from soil and storage of root samples. Experiments were conducted on fine roots of Eucalyptus nitens from a clay soil to establish a method for estimating true concentrations of nitrogen (N), phosphorus (P) and potassium (K) in root samples (i.e. unbiased by the soil adhering to roots), and to test the adequacy of measurements of ash residues of root samples for estimating the quantity of soil adhering to roots. Results indicated that nutrient concentrations on the basis of ash-free weight of root samples approached true nutrient concentrations of roots when the quality of soil adhering to roots was small, and the nutrient concentration of soil was much lower than the roots. Estimates of true nutrient concentrations of roots calculated from the information on the weight of soil adhering to roots and the nutrient concentration of the soil were satisfactory in the prediction of nutrient content of roots for a range of soil-contamination. The factor which accounted for contamination, and helped estimation of true concentrations from measured concentrations, depended on the magnitude of soil contamination and the relative concentrations of nutrients in roots and soil. Wet separation (washing) of roots from soil compared with dry separation resulted in 24% loss of K. With various methods of storage of washed root samples, the level of soil contamination was 5-20% of the root sample. Submergence of roots in water for 15 days after washing reduced the concentration of N, P and K in roots to 84, 50 and 54% of those roots which were dried immediately following washing. The rate of nutrient loss from roots was greater for K than for N and P when washed samples were stored submerged. On the basis of this study, it is recommended that roots, after separation from soil, should be dried as soon as possible with a minimum exposure of roots to wet conditions. Estimates of soil adhering to roots, and nutrient concentration of the adhering soil, are required to infer correct concentrations of nutrients in root samples.


Sign in / Sign up

Export Citation Format

Share Document