Soil Type Modifies the Impacts of Warming and Snow Exclusion on Carbon and Nutrient Losses

Author(s):  
Stephanie M. Juice ◽  
Paul G. Schaberg ◽  
Alexandra M. Kosiba ◽  
Carl E. Waite ◽  
Gary J. Hawley ◽  
...  

Abstract The varied and wide-reaching impacts of climate change are occurring across heterogeneous landscapes. Despite the known importance of soils in mediating biogeochemical nutrient cycling, there is little experimental evidence of how soil characteristics may shape ecosystem response to climate change. Our objective was to clarify how soil characteristics modify the impact of climate changes on carbon and nutrient leaching losses in temperate forests. We therefore conducted a field-based mesocosm experiment with replicated warming and snow exclusion treatments on two soils in large (2.4 m diameter), in-field forest sapling mesocosms. We found that nutrient loss responses to warming and snow exclusion treatments frequently varied substantially by soil type. Indeed, in some cases, soil type nullified the impact of a climate treatment. For example, warming and snow exclusion increased nitrogen (N) losses on fine soils by up to four times versus controls, but these treatments had no impact on coarse soils. Generally, the coarse textured soil, with its lower soil-water holding capacity, had higher nutrient losses (e.g., 12-17 times more total N loss from coarse than fine soils), except in the case of phosphate, which had consistently higher losses (23-58%) from the finer textured soil. Furthermore, the mitigation of nutrient loss by increasing tree biomass varied by soil type and nutrient. Our results suggest that potentially large biogeochemical responses to climate change are strongly mediated by soil characteristics, providing further evidence of the need to consider soil properties in Earth system models for improving nutrient cycling and climate projections.

2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Hatem Mahmoud ◽  
Ayman Ragab

The density of building blocks and insufficient greenery in cities tend to contribute dramatically not only to increased heat stress in the built environment but also to higher energy demand for cooling. Urban planners should, therefore, be conscious of their responsibility to reduce energy usage of buildings along with improving outdoor thermal efficiency. This study examines the impact of numerous proposed urban geometry cases on the thermal efficiency of outer spaces as well as the energy consumption of adjacent buildings under various climate change scenarios as representative concentration pathways (RCP) 4.5 and 8.5 climate projections for New Aswan city in 2035. The investigation was performed at one of the most underutilized outdoor spaces on the new campus of Aswan University in New Aswan city. The potential reduction of heat stress was investigated so as to improve the thermal comfort of the investigated outdoor spaces, as well as energy savings based on the proposed strategies. Accordingly, the most appropriate scenario to be adopted to cope with the inevitable climate change was identified. The proposed scenarios were divided into four categories of parameters. In the first category, shelters partially (25–50% and 75%) covering the streets were used. The second category proposed dividing the space parallel or perpendicular to the existing buildings. The third category was a hybrid scenario of the first and second categories. In the fourth category, a green cover of grass was added. A coupling evaluation was applied utilizing ENVI-met v4.2 and Design-Builder v4.5 to measure and improve the thermal efficiency of the outdoor space and reduce the cooling energy. The results demonstrated that it is better to cover outdoor spaces with 50% of the overall area than transform outdoor spaces into canyons.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 672
Author(s):  
Sandoval Carpinelli ◽  
Adriel Ferreira da Fonseca ◽  
Pedro Henrique Weirich Neto ◽  
Santos Henrique Brant Dias ◽  
Laíse da Silveira Pontes

Residue decomposition from cattle dung is crucial in the nutrient cycling process in Integrated Crop–Livestock Systems (ICLS). It also involves the impact of the presence of trees exerted on excreta distribution, as well as nutrient cycling. The objectives of this research included (i) mapping the distribution of cattle dung in two ICLS, i.e., with and without trees, CLT and CL, respectively, and (ii) quantification of dry matter decomposition and nutrient release (nitrogen—N, phosphorus—P, potassium—K, and sulphur—S) from cattle dung in both systems. The cattle dung excluded boxes were set out from July 2018 to October 2018 (pasture phase), and retrieved after 1, 7, 14, 21, 28, 56 and 84 days (during the grazing period). The initial concentrations of N (~19 g kg−1), P (~9 g kg−1), K (~16 g kg−1), and S (~8 g kg−1) in the cattle dung showed no differences. The total N, P, K and S released from the cattle dung residues were less in the CLT system (2.2 kg ha−1 of N; 0.7 kg ha−1 of P; 2.2 kg ha−1 of K and 0.6 kg ha−1 of S), compared to the CL (4.2 kg ha−1 of N; 1.4 kg ha−1 of P; 3.6 kg ha−1 of K and 1.1 kg ha−1 of S). Lesser quantities of cattle dung were observed in the CLT (1810) compared to the CL (2652), caused by the lower stocking rate, on average, in this system (721 in the CL vs. 393 kg ha−1 in the CLT) because of the reduced amount of pasture in the CLT systems (−41%), probably due to light reduction (−42%). The density of the excreta was determined using the Thiessen polygon area. The CL system revealed a higher concentration of faeces at locations near the water points, gate and fences. The CLT affects the spatial distribution of the dung, causing uniformity. Therefore, these results strengthen the need to understand the nutrient release patterns from cattle dung to progress fertilisation management.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 604 ◽  
Author(s):  
G. D. Schwenke ◽  
B. M. Haigh

Summer crop production on slow-draining Vertosols in a sub-tropical climate has the potential for large emissions of soil nitrous oxide (N2O) from denitrification of applied nitrogen (N) fertiliser. While it is well established that applying N fertiliser will increase N2O emissions above background levels, previous research in temperate climates has shown that increasing N fertiliser rates can increase N2O emissions linearly, exponentially or not at all. Little such data exists for summer cropping in sub-tropical regions. In four field experiments at two locations across two summers, we assessed the impact of increasing N fertiliser rate on both soil N2O emissions and crop yield of grain sorghum (Sorghum bicolor L.) or sunflower (Helianthus annuus L.) in Vertosols of sub-tropical Australia. Rates of N fertiliser, applied as urea at sowing, included a nil application, an optimum N rate and a double-optimum rate. Daily N2O fluxes ranged from –3.8 to 2734g N2O-Nha–1day–1 and cumulative N2O emissions ranged from 96 to 6659g N2O-Nha–1 during crop growth. Emissions of N2O increased with increased N fertiliser rates at all experimental sites, but the rate of N loss was five times greater in wetter-than-average seasons than in drier conditions. For two of the four experiments, periods of intense rainfall resulted in N2O emission factors (EF, percent of applied N emitted) in the range of 1.2–3.2%. In contrast, the EFs for the two drier experiments were 0.41–0.56% with no effect of N fertiliser rate. Additional 15N mini-plots aimed to determine whether N fertiliser rate affected total N lost from the soil–plant system between sowing and harvest. Total 15N unaccounted was in the range of 28–45% of applied N and was presumed to be emitted as N2O+N2. At the drier site, the ratio of N2 (estimated by difference)to N2O (measured) lost was a constant 43%, whereas the ratio declined from 29% to 12% with increased N fertiliser rate for the wetter experiment. Choosing an N fertiliser rate aimed at optimum crop production mitigates potentially high environmental (N2O) and agronomic (N2+N2O) gaseous N losses from over-application, particularly in seasons with high intensity rainfall occurring soon after fertiliser application.


Author(s):  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi

<p>The impact of climate change on climatic actions could significantly affect, in the mid-term future, the design of new structures as well as the reliability of existing ones designed in accordance to the provisions of present and past codes. Indeed, current climatic loads are defined under the assumption of stationary climate conditions but climate is not stationary and the current accelerated rate of changes imposes to consider its effects.</p><p>Increase of greenhouse gas emissions generally induces a global increase of the average temperature, but at local scale, the consequences of this phenomenon could be much more complex and even apparently not coherent with the global trend of main climatic parameters, like for example, temperature, rainfalls, snowfalls and wind velocity.</p><p>In the paper, a general methodology is presented, aiming to evaluate the impact of climate change on structural design, as the result of variations of characteristic values of the most relevant climatic actions over time. The proposed procedure is based on the analysis of an ensemble of climate projections provided according a medium and a high greenhouse gas emission scenario. Factor of change for extreme value distribution’s parameters and return values are thus estimated in subsequent time windows providing guidance for adaptation of the current definition of structural loads.</p><p>The methodology is illustrated together with the outcomes obtained for snow, wind and thermal actions in Italy. Finally, starting from the estimated changes in extreme value parameters, the influence on the long-term structural reliability can be investigated comparing the resulting time dependent reliability with the reference reliability levels adopted in modern Structural codes.</p>


2017 ◽  
Vol 15 (3) ◽  
pp. e0115 ◽  
Author(s):  
Pilar Martinez ◽  
María Blanco ◽  
Benjamin Van Doorslaer ◽  
Fabien Ramos ◽  
Andrej Ceglar

Recent studies point to climate change being one of the long-term drivers of agricultural market uncertainty. To advance in the understanding of the influence of climate change on future agricultural market developments, we compared a baseline scenario for the year 2030 with alternative simulation scenarios that differ regarding: (1) emission scenarios; (2) climate projections; and (3) the consideration of carbon fertilization effects on crop growth. For each simulation scenario, the CAPRI model provides global and EU-wide impacts of climate change on agricultural markets. Results showed that climate change would considerably affect agrifood markets up to 2030. Nevertheless, market-driven adaptation strategies (production intensification, trade adjustments) would soften the impact of yield shocks on supply and demand. As a result, regional changes in production would be lower than foreseen by other studies focused on supply effects.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 959
Author(s):  
Ana María Durán-Quesada ◽  
Rogert Sorí ◽  
Paulina Ordoñez ◽  
Luis Gimeno

The Intra–Americas Seas region is known for its relevance to air–sea interaction processes, the contrast between large water masses and a relatively small continental area, and the occurrence of extreme events. The differing weather systems and the influence of variability at different spatio–temporal scales is a characteristic feature of the region. The impact of hydro–meteorological extreme events has played a huge importance for regional livelihood, having a mostly negative impact on socioeconomics. The frequency and intensity of heavy rainfall events and droughts are often discussed in terms of their impact on economic activities and access to water. Furthermore, future climate projections suggest that warming scenarios are likely to increase the frequency and intensity of extreme events, which poses a major threat to vulnerable communities. In a region where the economy is largely dependent on agriculture and the population is exposed to the impact of extremes, understanding the climate system is key to informed policymaking and management plans. A wealth of knowledge has been published on regional weather and climate, with a majority of studies focusing on specific components of the system. This study aims to provide an integral overview of regional weather and climate suitable for a wider community. Following the presentation of the general features of the region, a large scale is introduced outlining the main structures that affect regional climate. The most relevant climate features are briefly described, focusing on sea surface temperature, low–level circulation, and rainfall patterns. The impact of climate variability at the intra–seasonal, inter–annual, decadal, and multi–decadal scales is discussed. Climate change is considered in the regional context, based on current knowledge for natural and anthropogenic climate change. The present challenges in regional weather and climate studies have also been included in the concluding sections of this review. The overarching aim of this work is to leverage information that may be transferred efficiently to support decision–making processes and provide a solid foundation on regional weather and climate for professionals from different backgrounds.


Climate ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 139
Author(s):  
Manashi Paul ◽  
Sijal Dangol ◽  
Vitaly Kholodovsky ◽  
Amy R. Sapkota ◽  
Masoud Negahban-Azar ◽  
...  

Crop yield depends on multiple factors, including climate conditions, soil characteristics, and available water. The objective of this study was to evaluate the impact of projected temperature and precipitation changes on crop yields in the Monocacy River Watershed in the Mid-Atlantic United States based on climate change scenarios. The Soil and Water Assessment Tool (SWAT) was applied to simulate watershed hydrology and crop yield. To evaluate the effect of future climate projections, four global climate models (GCMs) and three representative concentration pathways (RCP 4.5, 6, and 8.5) were used in the SWAT model. According to all GCMs and RCPs, a warmer climate with a wetter Autumn and Spring and a drier late Summer season is anticipated by mid and late century in this region. To evaluate future management strategies, water budget and crop yields were assessed for two scenarios: current rainfed and adaptive irrigated conditions. Irrigation would improve corn yields during mid-century across all scenarios. However, prolonged irrigation would have a negative impact due to nutrients runoff on both corn and soybean yields compared to rainfed condition. Decision tree analysis indicated that corn and soybean yields are most influenced by soil moisture, temperature, and precipitation as well as the water management practice used (i.e., rainfed or irrigated). The computed values from the SWAT modeling can be used as guidelines for water resource managers in this watershed to plan for projected water shortages and manage crop yields based on projected climate change conditions.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2266 ◽  
Author(s):  
Enrique Soriano ◽  
Luis Mediero ◽  
Carlos Garijo

Climate projections provided by EURO-CORDEX predict changes in annual maximum series of daily rainfall in the future in some areas of Spain because of climate change. Precipitation and temperature projections supplied by climate models do not usually fit exactly the statistical properties of the observed time series in the control period. Bias correction methods are used to reduce such errors. This paper seeks to find the most adequate bias correction techniques for temperature and precipitation projections that minimizes the errors between observations and climate model simulations in the control period. Errors in flood quantiles are considered to identify the best bias correction techniques, as flood quantiles are used for hydraulic infrastructure design and safety assessment. In addition, this study aims to understand how the expected changes in precipitation extremes and temperature will affect the catchment response in flood events in the future. Hydrological modelling is required to characterize rainfall-runoff processes adequately in a changing climate, in order to estimate flood changes expected in the future. Four catchments located in the central-western part of Spain have been selected as case studies. The HBV hydrological model has been calibrated in the four catchments by using the observed precipitation, temperature and streamflow data available on a daily scale. Rainfall has been identified as the most significant input to the model, in terms of its influence on flood response. The quantile mapping polynomial correction has been found to be the best bias correction method for precipitation. A general reduction in flood quantiles is expected in the future, smoothing the increases identified in precipitation quantiles by the reduction of soil moisture content in catchments, due to the expected increase in temperature and decrease in mean annual precipitations.


2009 ◽  
Vol 22 (17) ◽  
pp. 4574-4589 ◽  
Author(s):  
Marcia B. Baker ◽  
Gerard H. Roe

Abstract The framework of feedback analysis is used to explore the controls on the shape of the probability distribution of global mean surface temperature response to climate forcing. It is shown that ocean heat uptake, which delays and damps the temperature rise, can be represented as a transient negative feedback. This transient negative feedback causes the transient climate change to have a narrower probability distribution than that of the equilibrium climate response (the climate sensitivity). In this sense, climate change is much more predictable than climate sensitivity. The width of the distribution grows gradually over time, a consequence of which is that the larger the climate change being contemplated, the greater the uncertainty is about when that change will be realized. Another consequence of this slow growth is that further efforts to constrain climate sensitivity will be of very limited value for climate projections on societally relevant time scales. Finally, it is demonstrated that the effect on climate predictability of reducing uncertainty in the atmospheric feedbacks is greater than the effect of reducing uncertainty in ocean feedbacks by the same proportion. However, at least at the global scale, the total impact of uncertainty in climate feedbacks is dwarfed by the impact of uncertainty in climate forcing, which in turn is contingent on choices made about future anthropogenic emissions.


2016 ◽  
Vol 8 (1) ◽  
pp. 142-164 ◽  
Author(s):  
Philbert Luhunga ◽  
Ladslaus Chang'a ◽  
George Djolov

The IPCC (Intergovernmental Panel on Climate Change) assessment reports confirm that climate change will hit developing countries the hardest. Adaption is on the agenda of many countries around the world. However, before devising adaption strategies, it is crucial to assess and understand the impacts of climate change at regional and local scales. In this study, the impact of climate change on rain-fed maize (Zea mays) production in the Wami-Ruvu basin of Tanzania was evaluated using the Decision Support System for Agro-technological Transfer. The model was fed with daily minimum and maximum temperatures, rainfall and solar radiation for current climate conditions (1971–2000) as well as future climate projections (2010–2099) for two Representative Concentration Pathways: RCP 4.5 and RCP 8.5. These data were derived from three high-resolution regional climate models, used in the Coordinated Regional Climate Downscaling Experiment program. Results showed that due to climate change future maize yields over the Wami-Ruvu basin will slightly increase relative to the baseline during the current century under RCP 4.5 and RCP 8.5. However, maize yields will decline in the mid and end centuries. The spatial distribution showed that high decline in maize yields are projected over lower altitude regions due to projected increase in temperatures in those areas.


Sign in / Sign up

Export Citation Format

Share Document