scholarly journals Growth, sporulation and production of bioactive compounds by Bacillus subtilis R14

2010 ◽  
Vol 53 (3) ◽  
pp. 643-652 ◽  
Author(s):  
André Lacerda Ulysses de Carvalho ◽  
Fábio Henrique Portella Corrêa de Oliveira ◽  
Rosa de Lima Ramos Mariano ◽  
Ester Ribeiro Gouveia ◽  
Ana Maria Souto-Maior

The physiology of B. subtilis R14 was investigated in minimal medium under excess-oxygen and oxygen-limited conditions. Growth and efficient sporulation could be achieved in excess-oxygen culture on medium with readily metabolizable carbon and nitrogen sources, which allowed high growth rate and high biomass yield. A short transition phase between the exponential growth and sporulation could be attained by formulating a medium with a well-balanced C/N ratio. Under oxygen-limitation, but in the presence of essential nutrients (i.e. excess-nutrient cultivation), B. subtilis R14 produced bioactive compounds, which showed activity against several phytopathogenic bacteria. Under anaerobic condition, the organism did not grow neither through fermentation nor anaerobic respiration. However, addition of pyruvate to the medium allowed its growth through fermentation and anaerobic respiration. The knowledge acquired in this work could be relevant both for the design of a production process as well as for the formulation of an effective commercial biocontrol product.

Fermentation ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 16
Author(s):  
Daniela Chmelová ◽  
Barbora Legerská ◽  
Miroslav Ondrejovič ◽  
Stanislav Miertuš

Polyhydroxyalkanoates (PHAs) represent a promising alternative to commercially used petroleum-based plastics. Pseudomonas oleovorans is a natural producer of medium-chain-length PHA (mcl-PHA) under cultivation conditions with nitrogen limitation and carbon excess. Two-step cultivation appears to be an efficient but more expensive method of PHA production. Therefore, the aim of this work was to prepare a minimal synthetic medium for maximum biomass yield and to optimize selected independent variables by response surface methodology (RSM). The highest biomass yield (1.71 ± 0.04 g/L) was achieved in the optimized medium containing 8.4 g/L glucose, 5.7 g/L sodium ammonium phosphate and 35.4 mM phosphate buffer. Under these conditions, both carbon and nitrogen sources were completely consumed after 48 h of the cultivation and the biomass yield was 1.7-fold higher than in the conventional medium recommended by the literature. This approach demonstrates the possibility of using two-stage PHA cultivation to obtain the maximum amount of biomass and PHA.


2021 ◽  
Vol 924 (1) ◽  
pp. 012083
Author(s):  
V T Widayanti ◽  
T Estiasih ◽  
E Zubaidah ◽  
M Taher

Abstract Angkak is one of the Monascus fermented products with rice as a substrate. In addition, Chinese yam, potatoes, soybean, ginseng and onions can be used as a substrate for fermentation products by Monascus sp. It was known that the fermented product by Monascus sp. produces several bioactive compounds that have antihyperlipidemic activity. These bioactive compounds are monacolin-K and pigment compounds (monascin and ankaflavin). Each of these compounds has different cholesterol inhibitory activity. The production of these bioactive compounds is strongly influenced by the nutritional composition of the fermentation media. The addition of the right carbon and nitrogen sources can accelerate the production of bioactive compounds by Monascus sp.


2021 ◽  
pp. 53-54
Author(s):  
Arshi Naaj Afsana ◽  
Ajay Kumar Srivastava ◽  
Madhulika Singh

The microorganisms like fungi proliferate in different environmental and ecological conditions depending upon the availability of nutrients and the form of nutrient that they absorb. In addition to this the physical conditions like temperature, pH, salinity and light etc. also effect the growth and biomass production of fungal species. The present study was carried out to determine the effect of variation in physical and chemical parameters on growth and biomass production of the fungal strain Fusarium equiseti (MTCC9658). A maximum biomass yield of 12.24 g/L at pH 5 and temperature of 30ºC was recorded; and minimum of 5.21 g/L at pH 9 and temperature of 25ºC.The observations clearly indicate that pH 9 and above did not support higher biomass production at any of the temperatures,while pH 5 to pH 6 supports higher dry biomass production in all temperature ranges applied.The different carbon and nitrogen sources used in the medium corresponded to variation in growth of the strain. Dextrose in combination with Yeast extract as nitrogen source was best for biomass production.


1995 ◽  
Vol 41 (4-5) ◽  
pp. 345-353 ◽  
Author(s):  
C. David Boyle

White-rot fungi degrade many hazardous organic compounds that are not readily degraded by other microorganisms. Some of these compounds are soil contaminants, so methods for using these fungi to decontaminate soil through either land farming or composting technologies are being developed. White-rot fungi normally colonize plants or plant residues (e.g., wood) and do not grow well in unamended soil, particularly if it is not sterilized. A practical method to promote their growth in soil, without the use of large quantities of amendments or inoculum, is presented. A variety of assays showed that growth of white-rot fungi in steamed soil is limited by availability of carbon and nitrogen sources, but not other nutrients. Ground alfalfa straw was a more effective inexpensive source of these nutrients than the other amendments that were tested. However, the fungi only sometimes colonized alfalfa-amended nonsterile soil, as a result of competition from other microorganisms. Consistently high growth of the white-rot fungi in alfalfa-amended soil could be induced by adjusting the moisture content, adding the fungicide benomyl, and inoculating with benomyl-resistant fungi. In soil so treated, degradation (mineralization) of pentachlorophenol was much more rapid than in untreated soil.Key words: white-rot fungi, bioremediation, growth, pentachlorophenol.


1995 ◽  
Vol 41 (4-5) ◽  
pp. 309-315 ◽  
Author(s):  
Xiaowen Liao ◽  
Leo C. Vining ◽  
Janice L. Doull

Cultures of Streptomyces coelicolor A3 (2) produced actinorhodin in defined media with various carbon and nitrogen sources. Production occurred during biomass accumulation if assimilation of either the carbon or the nitrogen source limited the rate of growth. High growth rates tended to delay product synthesis until after biomass accumulation was complete, but fully biphasic fermentation profiles were achieved only with media supporting very rapid growth. The onset of actinorhodin production then coincided with a decline in the growth rate during transition of carbon-sufficient cultures to stationary phase. In cultures with maltose as a growth-limiting carbon source, depletion of phosphate increased the rate of actinorhodin biosynthesis, but did not alter the timing of its initiation. With defined media, the use of spores rather than vegetative mycelium as inocula reduced the overlap between trophophase and idiophase. The general guidelines for achieving biphasic production of actinorhodin in S. coelicolor A3 (2) cultures could be used to obtain trophophase–idiophase separation in cultures of Streptomyces venezuelae producing chloramphenicol. However, the conditions needed to be modified to give optimized biphasic fermentations with individual strains. Under conditions favouring chloramphenicol production in a distinct idiophase, aromatic amine secondary metabolites in the same cultures of S. venezuelae were produced in a pattern that overlapped the trophophase, suggesting that conditions need to be tailored also to meet differences in the regulation of secondary metabolites.Key words: Streptomyces coelicolor A3 (2), Streptomyces venezuelae, actinorhodin, biphasic fermentations, chloramphenicol, inoculum shift down.


2019 ◽  
Vol 118 (8) ◽  
pp. 236-240
Author(s):  
Dr.R. Murugesan ◽  
M. Leelavathi ◽  
Dr. K. Ravindran

towards jumping from the category of developing economy to developed economy there is one big factor that stops and poses a hindrance in its path of advancement and that obstacle is termed as Poverty. The Indian economic policy focuses on a high growth rate along with a equal participation of the poor so that they avail the opportunities available in the market economy. And in order to ensure the participation of the poor it has become important for the country to create a platform where the poor can easily access the various financial products. Microfinance is one such strategy for inclusive growth. Microfinance can change the life of the poor though not completely but a reasonable change can be ensured. In different phases of life women play a crucial role despite the discrimination that is faced by them. But equality can be endowed to women by enhancing the entrepreneurial skills in them. This is possible through Self Help Groups (SHGs). In India women produce around 30% of the total food consumed but she gets only 10% of the property or wealth of the country. Development of women is inevitable for the development and growth of any economy. SHGs happen to be a positive step in this direction. Along with these mediums there should be a cheap and easy source of credit for them and Microfinance fulfills the requirement. This study aims to find the role of this strong medium of Microfinance in the advancement of SHGs in India


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yanhua Yao ◽  
Guimei Zhou ◽  
Yonghui Lin ◽  
Xinqi Xu ◽  
Jie Yang

Abstract Laccases are a class of multi-copper oxidases with important industrial values. A thermotolerant laccase produced by a basidiomycete fungal strain Cerrena unicolor CGMCC 5.1011 was studied. With glycerin and peptone as the carbon and nitrogen sources, respectively, a maximal laccase activity of 121.7 U/mL was attained after cultivation in the shaking flask for 15 days. Transcriptomics analysis revealed an expressed laccase gene family of 12 members in C. unicolor strain CGMCC 5.1011, and the gene and cDNA sequences were cloned. A glycosylated laccase was purified from the fermentation broth of Cerrena unicolor CGMCC 5.1011 and corresponded to Lac2 based on MALDI-TOF MS/MS identification. Lac2 was stable at pH 5.0 and above, and was resistant to organic solvents. Lac2 displayed remarkable thermostability, with half-life time of 1.67 h at 70 ºC. Consistently, Lac2 was able to completely decolorize malachite green (MG) at high temperatures, whereas Lac7 from Cerrena sp. HYB07 resulted in accumulation of colored MG transformation intermediates. Molecular dynamics simulation of Lac2 was conducted, and possible mechanisms underlying Lac2 thermostability were discussed. The robustness of C. unicolor CGMCC 5.1011 laccase would not only be useful for industrial applications, but also provide a template for future work to develop thermostable laccases.


2013 ◽  
Vol 740-742 ◽  
pp. 323-326
Author(s):  
Kassem Alassaad ◽  
François Cauwet ◽  
Davy Carole ◽  
Véronique Soulière ◽  
Gabriel Ferro

Abstract. In this paper, conditions for obtaining high growth rate during epitaxial growth of SiC by vapor-liquid-solid mechanism are investigated. The alloys studied were Ge-Si, Al-Si and Al-Ge-Si with various compositions. Temperature was varied between 1100 and 1300°C and the carbon precursor was either propane or methane. The variation of layers thickness was studied at low and high precursor partial pressure. It was found that growth rates obtained with both methane and propane are rather similar at low precursor partial pressures. However, when using Ge based melts, the use of high propane flux leads to the formation of a SiC crust on top of the liquid, which limits the growth by VLS. But when methane is used, even at extremely high flux (up to 100 sccm), no crust could be detected on top of the liquid while the deposit thickness was still rather small (between 1.12 μm and 1.30 μm). When using Al-Si alloys, no crust was also observed under 100 sccm methane but the thickness was as high as 11.5 µm after 30 min growth. It is proposed that the upper limitation of VLS growth rate depends mainly on C solubility of the liquid phase.


2018 ◽  
Vol 69 ◽  
pp. 1-11 ◽  
Author(s):  
Willian Daniel Hahn Schneider ◽  
Roselei Claudete Fontana ◽  
Simone Mendonça ◽  
Félix Gonçalves de Siqueira ◽  
Aldo José Pinheiro Dillon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document