scholarly journals Macroecological analyses support an overkill scenario for late Pleistocene extinctions

2004 ◽  
Vol 64 (3a) ◽  
pp. 407-414 ◽  
Author(s):  
J. A. F. Diniz-Filho

The extinction of megafauna at the end of Pleistocene has been traditionally explained by environmental changes or overexploitation by human hunting (overkill). Despite difficulties in choosing between these alternative (and not mutually exclusive) scenarios, the plausibility of the overkill hypothesis can be established by ecological models of predator-prey interactions. In this paper, I have developed a macroecological model for the overkill hypothesis, in which prey population dynamic parameters, including abundance, geographic extent, and food supply for hunters, were derived from empirical allometric relationships with body mass. The last output correctly predicts the final destiny (survival or extinction) for 73% of the species considered, a value only slightly smaller than those obtained by more complex models based on detailed archaeological and ecological data for each species. This illustrates the high selectivity of Pleistocene extinction in relation to body mass and confers more plausibility on the overkill scenario.

2018 ◽  
Author(s):  
Daniel L. Preston ◽  
Jeremy S. Henderson ◽  
Landon P. Falke ◽  
Leah M. Segui ◽  
Tamara J. Layden ◽  
...  

AbstractDescribing the mechanisms that drive variation in species interaction strengths is central to understanding, predicting, and managing community dynamics. Multiple factors have been linked to trophic interaction strength variation, including species densities, species traits, and abiotic factors. Yet most empirical tests of the relative roles of multiple mechanisms that drive variation have been limited to simplified experiments that may diverge from the dynamics of natural food webs. Here, we used a field-based observational approach to quantify the roles of prey density, predator density, predator-prey body-mass ratios, prey identity, and abiotic factors in driving variation in feeding rates of reticulate sculpin (Cottus perplexus). We combined data on over 6,000 predator-prey observations with prey identification time functions to estimate 289 prey-specific feeding rates at nine stream sites in Oregon. Feeding rates on 57 prey types showed an approximately log-normal distribution, with few strong and many weak interactions. Model selection indicated that prey density, followed by prey identity, were the two most important predictors of prey-specific sculpin feeding rates. Feeding rates showed a positive, accelerating relationship with prey density that was inconsistent with predator saturation predicted by current functional response models. Feeding rates also exhibited four orders-of-magnitude in variation across prey taxonomic orders, with the lowest feeding rates observed on prey with significant anti-predator defenses. Body-mass ratios were the third most important predictor variable, showing a hump-shaped relationship with the highest feeding rates at intermediate ratios. Sculpin density was negatively correlated with feeding rates, consistent with the presence of intraspecific predator interference. Our results highlight how multiple co-occurring drivers shape trophic interactions in nature and underscore ways in which simplified experiments or reliance on scaling laws alone may lead to biased inferences about the structure and dynamics of species-rich food webs.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Felipe A Briceño ◽  
Quinn P Fitzgibbon ◽  
Elias T Polymeropoulos ◽  
Iván A Hinojosa ◽  
Gretta T Pecl

Abstract Predation risk can strongly shape prey ecological traits, with specific anti-predator responses displayed to reduce encounters with predators. Key environmental drivers, such as temperature, can profoundly modulate prey energetic costs in ectotherms, although we currently lack knowledge of how both temperature and predation risk can challenge prey physiology and ecology. Such uncertainties in predator–prey interactions are particularly relevant for marine regions experiencing rapid environmental changes due to climate change. Using the octopus (Octopus maorum)–spiny lobster (Jasus edwardsii) interaction as a predator–prey model, we examined different metabolic traits of sub adult spiny lobsters under predation risk in combination with two thermal scenarios: ‘current’ (20°C) and ‘warming’ (23°C), based on projections of sea-surface temperature under climate change. We examined lobster standard metabolic rates to define the energetic requirements at specific temperatures. Routine metabolic rates (RMRs) within a respirometer were used as a proxy of lobster activity during night and day time, and active metabolic rates, aerobic scope and excess post-exercise oxygen consumption were used to assess the energetic costs associated with escape responses (i.e. tail-flipping) in both thermal scenarios. Lobster standard metabolic rate increased at 23°C, suggesting an elevated energetic requirement (39%) compared to 20°C. Unthreatened lobsters displayed a strong circadian pattern in RMR with higher rates during the night compared with the day, which were strongly magnified at 23°C. Once exposed to predation risk, lobsters at 20°C quickly reduced their RMR by ~29%, suggesting an immobility or ‘freezing’ response to avoid predators. Conversely, lobsters acclimated to 23°C did not display such an anti-predator response. These findings suggest that warmer temperatures may induce a change to the typical immobility predation risk response of lobsters. It is hypothesized that heightened energetic maintenance requirements at higher temperatures may act to override the normal predator-risk responses under climate-change scenarios.


2014 ◽  
Vol 281 (1797) ◽  
pp. 20142103 ◽  
Author(s):  
Marlee A. Tucker ◽  
Tracey L. Rogers

Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial ( n = 51) and marine ( n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities.


2020 ◽  
Vol 287 (1938) ◽  
pp. 20200526
Author(s):  
Thomas M. Luhring ◽  
John P. DeLong

Trait evolution in predator–prey systems can feed back to the dynamics of interacting species as well as cascade to impact the dynamics of indirectly linked species (eco-evolutionary trophic cascades; EETCs). A key mediator of trophic cascades is body mass, as it both strongly influences and evolves in response to predator–prey interactions. Here, we use Gillespie eco-evolutionary models to explore EETCs resulting from top predator loss and mediated by body mass evolution. Our four-trophic-level food chain model uses allometric scaling to link body mass to different functions (ecological pleiotropy) and is realistically parameterized from the FORAGE database to mimic the parameter space of a typical freshwater system. To track real-time changes in selective pressures, we also calculated fitness gradients for each trophic level. As predicted, top predator loss generated alternating shifts in abundance across trophic levels, and, depending on the nature and strength in changes to fitness gradients, also altered trajectories of body mass evolution. Although more distantly linked, changes in the abundance of top predators still affected the eco-evolutionary dynamics of the basal producers, in part because of their relatively short generation times. Overall, our results suggest that impacts on top predators can set off transient EETCs with the potential for widespread indirect impacts on food webs.


2015 ◽  
Vol 776 ◽  
pp. 337-342 ◽  
Author(s):  
I. Made Londen Batan ◽  
Rodika ◽  
Muhamad Riva'i

Three wheel bike as a physical therapy equipment for post-stroke patients was designed with length of 1937 mm, 1010 mm in width and height of 905 mm. The bike is designd ergonomic and can be driven by rider foot or hand simultaneously. By using CATIA software the strength of material bike frame was analyst to support 100 kg of load. The design is realized into a prototype. The performance of bike prototype is tested, and the result sows that the function of bike mechanisme is fulfilled. By 10 respondents, who have a standard body mass index, the pedal test was conducted, and the result indicates that, the higher the speed of the pedal, the higher the energy consumption to pedaling. Leg tension muscles is measured by leg-dynamometer before and after pedaling, and the result shows the tension muscle is proportional to the increase of pedal speed. In order to evaluate the ergonomic aspect of bike design, the risk angle of extrem position of body during cycling are measured by goneo-set. By RULA method the risk of injury value of rider body is calculated while pedaling, and the result showed that 70% of respondents have a value of risk injury 2, while 30% had a value of 3. It means that, the bike design is ergonomic and comfortable to ride. In oder to evaluate the benefits of disigned bike, the pedal test is conducted by 4 post-stroke patients for 30 days periodical once every 3 days. The result shows that during 1 month exercise, the average number of cycling to pedal increase up to 100%. This means that the ability of post-stroke patients to pedal the bike increase significantly. That result showed that the bike design is useful as a tool for physical therapy post-stroke patients.


2015 ◽  
Vol 30 (11) ◽  
pp. 743-748 ◽  
Author(s):  
Hildemberg Agostinho Rocha de Santiago ◽  
Lucas Rodolfo De Pierro ◽  
Rafael Menezes Reis ◽  
Antônio Gabriel Ricardo Engracia Caluz ◽  
Victor Barbosa Ribeiro ◽  
...  

2017 ◽  
Author(s):  
Alex D. Washburne ◽  
Justin D. Silverman ◽  
James T. Morton ◽  
Daniel J. Becker ◽  
Daniel Crowley ◽  
...  

AbstractThe problem of pattern and scale is a central challenge in ecology. The problem of scale is central to community ecology, where functional ecological groups are aggregated and treated as a unit underlying an ecological pattern, such as aggregation of “nitrogen fixing trees” into a total abundance of a trait underlying ecosystem physiology. With the emergence of massive community ecological datasets, from microbiomes to breeding bird surveys, there is a need to objectively identify the scales of organization pertaining to well-defined patterns in community ecological data.The phylogeny is a scaffold for identifying key phylogenetic scales associated with macroscopic patterns. Phylofactorization was developed to objectively identify phylogenetic scales underlying patterns in relative abundance data. However, many ecological data, such as presence-absences and counts, are not relative abundances, yet it is still desireable and informative to identify phylogenetic scales underlying a pattern of interest. Here, we generalize phylofactorization beyond relative abundances to a graph-partitioning algorithm for any community ecological data.Generalizing phylofactorization connects many tools from data analysis to phylogenetically-informe analysis of community ecological data. Two-sample tests identify three phylogenetic factors of mammalian body mass which arose during the K-Pg extinction event, consistent with other analyses of mammalian body mass evolution. Projection of data onto coordinates defined by the phylogeny yield a phylogenetic principal components analysis which refines our understanding of the major sources of variation in the human gut microbiome. These same coordinates allow generalized additive modeling of microbes in Central Park soils and confirm that a large clade of Acidobacteria thrive in neutral soils. Generalized linear and additive modeling of exponential family random variables can be performed by phylogenetically-constrained reduced-rank regression or stepwise factor contrasts. We finish with a discussion of how phylofac-torization produces an ecological species concept with a phylogenetic constraint. All of these tools can be implemented with a new R package available online.


Sign in / Sign up

Export Citation Format

Share Document