scholarly journals Determination of in vitro antidiabetic effects of Zingiber officinale Roscoe

2012 ◽  
Vol 48 (4) ◽  
pp. 601-607 ◽  
Author(s):  
Naila Abdul Sattar ◽  
Fatma Hussain ◽  
Tahira Iqbal ◽  
Munir Ahmad Sheikh

Aqueous extracts of Zingiber officinale rhizomes were studied to evaluate their antidiabetic effects on protein glycation and on the diffusion of glucose in vitro in the present study. Zingiber officinale rhizome aqueous extract were examined at concentrations of 5, 10, 20 and 40 g/L. The antidiabetic effects were found to be dose-dependent. Antidiabetic potential of Zingiber officinale was mainly through inhibition of the glucose diffusion and to a limited extent by reducing the glycation. However, further studies are needed to determine in vitro effects of therapeutic potential by restraining postprandial glucose absorptions and plasma protein glycations in diabetic subjects.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Heon-Myung Lee ◽  
Gabsik Yang ◽  
Tae-Gue Ahn ◽  
Myung-Dong Kim ◽  
Agung Nugroho ◽  
...  

Aster glehni(AG) is a Korean traditional herb that grows in Ulleungdo Island, Republic of Korea. None of the several reports on AG include a determination of the effect of AG on adipogenesis. The primary aim of this study was to determine whether AG attenuates adipogenesis in mouse 3T3-L1 cells and epididymal fat tissue. AG blocked the differentiation of 3T3-L1 preadipocytes in a concentration-dependent manner and suppressed the expression of adipogenesis-related genes such asPPARγ,C/EBPα, andSREBP1c, the master regulators of adipogenesis. Male C57BL/6J mice were divided randomly and equally into 4 diet groups: control diet (CON), high-fat diet (HFD), HFD with 1% AG extract added (AG1), and HFD with 5% AG extract added (AG5). The experimental animals were fed HFD and the 2 combinations for 10 weeks. Mice fed HFD with AG gained less body weight and visceral fat-pad weight than did the mice fed HFD alone. Moreover, AG inhibited the expression of important adipogenic genes such asPPARγ,C/EBPα,SREBP1c,LXR, and leptin in the epididymal adipose tissue of the mice treated with AG1 and AG5. These findings indicate antiadipogenic and antiobesity effects of AG and suggest its therapeutic potential in obesity and obesity-related diseases.


2018 ◽  
Vol 8 (3) ◽  
pp. 193 ◽  
Author(s):  
Rosa Martha Perez Gutierrez ◽  
Alethia Muñiz-Ramirez ◽  
Abraham Heriberto Garcia Campoy ◽  
Jose Maria Mota Flores ◽  
Sergio Odin Flores

Background: The health benefits of edible plants have been widely investigated and disseminated. However, only polyphenols have been found to have sufficient therapeutic potential to be considered in clinical trials. Fewer manuscripts have other applications such as prospective health benefits and disease treatment. Other components of edible plants are responsible for a range of other benefits including antimalarial, burns, flu, cancer, inflammation, diabetes, glycation, antimicrobial, prevention of neurodegeneration, analgesic, antimigraine activity, sedative activities, etc. Accordingly, the public needs to be informed of the potential edible plants have to act on different targets and maintain better control over diabetes compared to commercial drugs which can be toxic, have side effects, do not have the capacity to maintain blood glucose at normal levels, and do not protect the patient from the complications of diabetes over time. Consequently, edible plants, such as Apium graveolen, which have therapeutic targets on AGEs formation, are potentially a better alternative treatment for diabetes.Methods: The leaves of celery were extracted with methanol (CM). Polyphenols contents in CM were investigated by liquid chromatography-electrospray ionization mass. The ability of the compounds to inhibit formation of AGEs was evaluated in vitro models using formation of AGE fluorescence intensity, level of fructosamine, Nε-(carboxymethyl)lysine (CML), methylglyoxal (MG)-derived protein, and formation of amyloid cross β structure. Protein-oxidation was determined by thiol group and protein carbonyl content. Inhibition of MG-derived AGEs and MG-trapping ability were also measured. Additionally, insulin production was determined in methylglyoxal-treated pancreatic RINm5F cells assay. Results: Apigenin, kaempferol, apiin, rutin, caffeic acid, ferulic acid, chlorogenic acid, coumaroylquinic acid, and p-coumaric acid were the major polyphenols contained in CM. In all the model tests CM displayed potent AGE inhibitory activity, suggesting that CM delayed the three stages of glycation. Accordingly, the mechanisms of action of celery involving dicarbonyl trapping and breaking the crosslink structure in the AGEs formed may contribute to the protection of pancreatic RINm5F cells against MG conditions.Conclusion: These findings indicate that CM have an excellent anti-glycation effect which may be beneficial for future development of antiglycating agents for the treatment of diabetes.Keywords: Apium graveolens, anti-glycation, polyphenols methylglyoxal, insulin, pancreatic cells


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Nisar Ahmad Zahid ◽  
Hawa Z.E. Jaafar ◽  
Mansor Hakiman

Ginger (Zingiber officinale Roscoe) var. Bentong is a monocotyledon plant that belongs to the Zingiberaceae family. Bentong ginger is the most popular cultivar of ginger in Malaysia, which is conventionally propagated by its rhizome. As its rhizomes are the economic part of the plant, the allocation of a large amount of rhizomes as planting materials increases agricultural input cost. Simultaneously, the rhizomes’ availability as planting materials is restricted due to the high demand for fresh rhizomes in the market. Moreover, ginger propagation using its rhizome is accompanied by several types of soil-borne diseases. Plant tissue culture techniques have been applied to produce disease-free planting materials of ginger to overcome these problems. Hence, the in vitro-induced microrhizomes are considered as alternative disease-free planting materials for ginger cultivation. On the other hand, Bentong ginger has not been studied for its microrhizome induction. Therefore, this study was conducted to optimize sucrose and plant growth regulators (PGRs) for its microrhizome induction. Microrhizomes were successfully induced in Murashige and Skoog (MS) medium supplemented with a high sucrose concentration (>45 g L−1). In addition, zeatin at 5–10 µM was found more effective for microrhizome induction than 6-benzylaminopurine (BAP) at a similar concentration. The addition of 7.5 µM 1-naphthaleneacetic acid (NAA) further enhanced microrhizome formation and reduced sucrose’s required dose that needs to be supplied for efficient microrhizome formation. MS medium supplemented with 60 g L−1 sucrose, 10 µM zeatin and 7.5 µM NAA was the optimum combination for the microrhizome induction of Bentong ginger. The in vitro-induced microrhizomes sprouted indoors in moist sand and all the sprouted microrhizomes were successfully established in field conditions. In conclusion, in vitro microrhizomes can be used as disease-free planting materials for the commercial cultivation of Bentong ginger.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 312
Author(s):  
Magdalena Dunowska ◽  
Sayani Ghosh

Feline infectious peritonitis (FIP) is a sporadic fatal disease of cats caused by a virulent variant of feline coronavirus (FCoV), referred to as FIP virus (FIPV). Treatment options are limited, and most of the affected cats die or are euthanized. Anecdotally, doxycycline has been used to treat FIP-affected cats, but there are currently no data to support or discourage such treatment. The aim of this study was to establish whether doxycycline inhibits replication of FIPV in vitro. The virus was cultured in Crandell-Rees feline kidney cells with various concentrations of doxycycline (0 to 50 µg/mL). The level of FIPV in cultures was determined by virus titration and FCoV-specific reverse-transcription quantitative PCR. Cell viability was also monitored. There was no difference in the level of infectious virus or viral RNA between doxycycline-treated and untreated cultures at 3, 12- and 18-hours post-infection. However, at 24 h, the growth of FIPV was inhibited by approximately two logs in cultures with >10 µg/mL doxycycline. This inhibition was dose-dependent, with inhibitory concentration 50% (IC50) 4.1 µg/mL and IC90 5.4 µg/mL. Our data suggest that doxycycline has some inhibitory effect on FIPV replication in vitro, which supports future clinical trials of its use for the treatment of FIP-affected cats.


2016 ◽  
Vol 115 (7) ◽  
pp. 2637-2645 ◽  
Author(s):  
Ahmad K. Dyab ◽  
Doaa A. Yones ◽  
Zedan Z. Ibraheim ◽  
Tasneem M. Hassan

Author(s):  
Fatima Khan ◽  
Mohd Nayab ◽  
Abdul Nasir Ansari

Ginger has been appreciated for over 2500-3000 years in many parts of the world due to its numerous scientific properties. The ginger plant (Zingiber officinale Roscoe) belongs to the Zingiberaceae family. It is a known food and flavoring ingredient reputed for its wide range of medicinal properties that have been widely used in Chinese, Ayurvedic, and Unāni Tibb worldwide, since antiquity. Ginger has long been used to cure a variety of ailments, including diarrhea, stomach discomfort, indigestion, and nausea. It is a versatile herb with phenomenal phytotherapeutic and medicinal properties. Active ingredients available in ginger such as 6-gingerol, 6-shogaol, 6-paradol, and zingerone are responsible for upgrading enzyme actions and balancing circulation through rejuvenating the body with physical re-strengthening. Gingerols, the key phenolic plant secondary metabolites responsible for its distinct flavor and health benefits, are found in the rhizome of ginger Extensive study has been undertaken over the last two decades to uncover bioactive ingredients and the therapeutic potential of ginger. This review considers ginger's chemical composition and the most recent study findings on its possible health advantages, such as analgesic, anti-inflammatory, antibacterial, and antioxidant properties due to its phytochemistry. Overall, clinical trials are needed to confirm these prospective various health advantages of ginger in human subjects and the most efficacious dosage, based on the current body of scientific literature.


Author(s):  
Julien Favresse ◽  
Joris Delanghe

Abstract Objectives Carbamylation is a non-enzymatic post-translational reaction of a primary amino group of a protein with isocyanate. The albumin carbamylation is a negative prognostic factor in chronic kidney disease (CKD) patients and induce charge difference implying an observed shift in electrophoretic mobility that can be measured through a symmetry factor (SF). Methods The Helena V8 and the Sebia Capillarys 2 systems were used for all experiments. The effect of in vitro carbamylation on the SF by spiking increasing concentrations of potassium isocyanate (KCNO) in serum of three healthy volunteers was investigated. Theoretical plate numbers (N) as a surrogate of separation efficiency were also calculated and correlations between SF and renal function biomarkers were performed on 284 patients. Results A dose-dependent impact of KCNO on the SF was observed for both methods with the Helena V8 being more sensitive. The mean N was significantly higher on the Helena V8 as compared to the Sebia Capillarys 2 (2,972 vs. 444.1, p<0.0001). The SF correlated significantly with eGFR (r=0.50, p<0.0001), creatinine (r=−0.31, p<0.0001) and urea (r=−0.34, p<0.0001) on the Helena V8. On the Sebia Capillarys 2, a significant correlation was only observed with eGFR (r=0.17, p=0.004). A better discrimination between CKD stages was also observed using the Helena V8. Conclusions Thanks to a higher mean N, the Helena V8 might offer new possibilities, including detection of carbamylated albumin through SF calculation. Further studies are still needed to confirm the interest of using this type of assays in clinical routine.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Giacomo Salvadore ◽  
Pascal Bonaventure ◽  
Anantha Shekhar ◽  
Philip L. Johnson ◽  
Brian Lord ◽  
...  

Abstract Orexin neurons originating in the perifornical and lateral hypothalamic area project to anxiety- and panic-associated neural circuitry, and are highly reactive to anxiogenic stimuli. Preclinical evidence suggests that the orexin system, and particularly the orexin-1 receptor (OX1R), may be involved in the pathophysiology of panic and anxiety. Selective OX1R antagonists thus may constitute a potential new treatment strategy for panic- and anxiety-related disorders. Here, we characterized a novel selective OX1R antagonist, JNJ-61393215, and determined its affinity and potency for human and rat OX1R in vitro. We also evaluated the safety, pharmacokinetic, and pharmacodynamic properties of JNJ-61393215 in first-in-human single- and multiple-ascending dose studies conducted. Finally, the potential anxiolytic effects of JNJ-61393215 were evaluated both in rats and in healthy men using 35% CO2 inhalation challenge to induce panic symptoms. In the rat CO2 model of panic anxiety, JNJ-61393215 demonstrated dose-dependent attenuation of CO2-induced panic-like behavior without altering baseline locomotor or autonomic activity, and had minimal effect on spontaneous sleep. In phase-1 human studies, JNJ-61393215 at 90 mg demonstrated significant reduction (P < 0.02) in CO2-induced fear and anxiety symptoms that were comparable to those obtained using alprazolam. The most frequently reported adverse events were somnolence and headache, and all events were mild in severity. These results support the safety, tolerability, and anxiolytic effects of JNJ-61393215, and validate CO2 exposure as a translational cross-species experimental model to evaluate the therapeutic potential of novel anxiolytic drugs.


Parasitology ◽  
2000 ◽  
Vol 120 (6) ◽  
pp. 547-551 ◽  
Author(s):  
O. BILLKER ◽  
A. J. MILLER ◽  
R. E. SINDEN

Malarial gametocytes circulate in the peripheral blood of the vertebrate host as developmentally arrested intra-erythrocytic cells, which only resume development into gametes when ingested into the bloodmeal of the female mosquito vector. The ensuing development encompasses sexual reproduction and mediates parasite transmission to the insect. In vitro the induction of gametogenesis requires a drop in temperature and either a pH increase from physiological blood pH (ca pH 7·4) to about pH 8·0, or the presence of a gametocyte-activating factor recently identified as xanthurenic acid (XA). However, it is unclear whether either the pH increase or XA act as natural triggers in the mosquito bloodmeal. We here use pH-sensitive microelectrodes to determine bloodmeal pH in intact mosquitoes. Measurements taken in the first 30 min after ingestion, when malarial gametogenesis is induced in vivo, revealed small pH increases from 7·40 (mouse blood) to 7·52 in Aedes aegypti and to 7·58 in Anophěles stephensi. However, bloodmeal pH was clearly suboptimal if compared to values required to induce gametogenesis in vitro. Xanthurenic acid is shown to extend the pH-range of exflagellation in vitro in a dose-dependent manner to values that we have observed in the bloodmeal, suggesting that in vivo malarial gametogenesis could be further regulated by both these factors.


Sign in / Sign up

Export Citation Format

Share Document