Persian Darnel (Lolium persicum) Fecundity Response to Spring Wheat, Canola, and Sunflower Interference

2006 ◽  
Vol 20 (2) ◽  
pp. 430-437 ◽  
Author(s):  
Johnathon D. Holman ◽  
Alvin J. Bussan ◽  
Bruce D. Maxwell ◽  
Perry R. Miller ◽  
James A. Mickelson

Persian darnel control options are limited and unmanaged populations can cause substantial crop yield loss. Integrating crop diversification and higher crop seeding rates into a cropping system might improve Persian darnel management. Field experiments were conducted to determine the effect of different crops and increased crop seeding rates on Persian darnel fecundity. Persian darnel produced up to 2,800 seeds per plant and 53,000 seeds/m2when grown without competition. Increasing crop density reduced Persian darnel tillers per plant, seed weight, and fecundity. Increasing crop density reduced Persian darnel fecundity 0.4 to 0.2% per spring wheat plant, 0.6 to 0.1% per canola plant, and 16 to 8% per sunflower plant. Persian darnel fecundity was impacted the greatest by reduced weed seedling establishment, which was caused by crop competition and seeding sunflower late in the spring preceded by a nonselective herbicide application. Results indicated delaying the seeding of spring crops or including a late-seeded warm season crop, like sunflower or safflower, in the cropping system is an effective weed management tool for reducing Persian darnel fecundity.

2014 ◽  
Vol 29 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Igor Spasojevic ◽  
Vesna Dragicevic ◽  
Milena Simic ◽  
Dusan Kovacevic ◽  
Milan Brankov

Rotation is a cropping system that has many advantages and ensures better crop growth and yielding. Its combinination with other cropping measures can ensure optimal crop density for maximal growth and photosynthesis efficiency. The aim of this study was to investigate the influence of different cropping systems: monoculture and two rotations, including maize, wheat and soybean (MSW and MWS), and different weed management methods (weed removal by hoeing, application of a full recommended herbicide dose (RD) and half that dose (0.5 RD), and weedy check) on weed biomass and maize growth parameters - leaf area index (LAI), free energy, contents of chlorophyll and carotenoids, grain yield, and their possible relationships in two fields of the maize hybrids ZP 677 (H1) and ZP 606 (H2). The lowest LAI and grain yield were found in monoculture, particularly in weedy check, which had relatively high weed infestation. Higher weed biomass was also observed in herbicide treated plots in monoculture. Such high competition pressure indicates a stress reflected on reduced LAI and chlorophyll content, and increased free energy and content of carotenoids. On the other hand, rotation, particularly if it is combined with the application of herbicides or hoeing, had a positive impact on yielding potential by increasing LAI and the contents of chlorophyll and carotenoids, and decreasing free energy.


Weed Science ◽  
1994 ◽  
Vol 42 (3) ◽  
pp. 364-368 ◽  
Author(s):  
W. Carroll Johnson ◽  
John Cardina ◽  
Benjamin G. Mullinix

Studies were conducted from 1987 to 1990 to measure the dynamics of sicklepod established at subeconomic threshold populations in a peanut-cotton-corn cropping system. The experimental site had no native populations of sicklepod prior to initiation of the study. Main plots were crops in the rotation sequence plus continuous summer fallow (no crop). Subplots were: sicklepod established in the initial year of the study, sicklepod established every year of the study, and no sicklepod. Sicklepod was established at subeconomic threshold densities to simulate weed survival and seed production in fields where economic thresholds were the basis for weed management decisions. Sicklepod growing alone in fallow plots produced more seed per plant, resulting in significantly more seedlings throughout the study than sicklepod growing with crops. Sicklepod growing in corn produced the fewest seed per plant. Seed produced from subeconomic threshold densities established only in the first year caused 7-, 21-, and 20-fold increases in sicklepod populations during the next three seasons compared to the nontreated control.


Author(s):  
Livija Zarina ◽  
Barbel Gerowitt ◽  
Bo Melander ◽  
Jukka Salonen ◽  
Roman Krawczuk ◽  
...  

<p>Within the ERA-net CORE Organic Plus transnational programmes supported project PRODIVA producing of the information required for a better utilization of crop diversification for weed management in North European organic arable cropping systems was started. To fulfill the goal of this project- not to eradicate weed problems, which is unlikely to happen in any arable farming system, but to maintain a diversified and manageable weed flora that can support beneficial organisms- there were data from ongoing long-termed cropping system experiments from Latvia analyzed.</p><p>It is hypothesised that: a) perennial weeds can be suppressed in the post-harvest period by improved cover crop establishment and pertinent selection of cover crop species; b) on-farm practices of crop diversification are related to weed pressure and species composition.</p><p class="R-MainText">On the bases on data from organic farm and ongoing long-termed cropping system experiment on weed dynamics in six-field crop rotations with cover crop was concluded that red clover as cover crop after the harvest period is effective to manage perennial weeds. In crop rotation with higher proportions of cereals weed infection growth in six-field rotation with 50% share of cereals up to 3.4, but with 33.3 %  share-up to 2.1 times.</p>


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 167
Author(s):  
Miriam Hannah Messelhäuser ◽  
Marcus Saile ◽  
Bernd Sievernich ◽  
Roland Gerhards

Effective control of Alopecurus myosuroides Huds. (blackgrass) solely with a chemical treatment is not guaranteed anymore because populations exhibit resistance to almost all herbicide modes of action. Integrated weed management (IWM) against blackgrass is necessary to maintain high weed control efficacies in winter cereals. Four field experiments were conducted in Southwest Germany from 2018 to 2020 to control A. myosuroides with a combination of cultural and chemical methods. Stubble treatments, including flat, deep and inversion soil tillage; false seedbed preparation and glyphosate use, were combined with the application of the new pre-emergence herbicide cinmethylin in two rates in winter wheat. Average densities of A. myosuroides in the untreated control plots were up to 505 plants m−2. The combination of different stubble management strategies and the pre-emergence herbicide cinmethylin controlled 86–97% of A. myosuroides plants at the low rate and 95–100% at the high rate until 120 days after sowing. The different stubble tillage practices varied in their efficacy between trials and years. Most effective and consistent were pre-sowing glyphosate application on the stubble and stale seedbed preparation with a disc harrow. Stubble treatments increased winter wheat density in the first year but had no effect on crop density in the second year. Pre-emergence application of cinmethylin did not reduce winter wheat densities. Multiple tactics of weed control, including stubble treatments and pre-emergence application of cinmethylin, provided higher and more consistent control of A. myosuroides. Integration of cultural weed management could prevent the herbicide resistance development.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 135
Author(s):  
Ignacio M. Luna ◽  
César Fernández-Quintanilla ◽  
José Dorado

The aim of the present work was to study the feasibility of pasture cropping under the Mediterranean conditions prevailing in central Spain and its potential as a weed management tool. Three cropping systems were assessed: conventionally grown winter barley and winter barley in pasture cropping with two perennial summer species, Cynodon dactylon and Eragrostis curvula. The results showed that the growth of these two species in a pasture cropping system was limited by the severe drought conditions and high temperatures present during the summer in some of the study years. Although there were no differences in the establishment of winter barley in any of the treatments assessed, pasture cropping reduced winter barley yields up to 50%–60% in years with low rainfall in spring. Regarding weed control, pasture cropping showed a significant suppression of the total weed density and number of weed species. As a conclusion, pasture cropping can be considered as a valid weed management tool. However, the economic feasibility of this system under the climatic conditions of central Spain (characterized by a high risk of severe summer droughts) is still not clear. The availability of supplemental irrigation may reduce competition between pastures and winter crops and ensure a profitable production of summer pastures.


Weed Science ◽  
2012 ◽  
Vol 60 (3) ◽  
pp. 501-509 ◽  
Author(s):  
Jannie Maj Olsen ◽  
Hans-Werner Griepentrog ◽  
Jon Nielsen ◽  
Jacob Weiner

Previous research has shown that both the density and spatial pattern of wheat have an influence on crop growth and weed suppression, but it is not clear what degree of uniformity is necessary to achieve major improvements in weed suppression. Field experiments were performed over 3 yr to investigate the effects of crop density and different spatial distributions on weed suppression. The spatial pattern of spring wheat sown in five patterns and three densities in small weed-infested plots were analyzed with the use of digitized photographs of field plots to describe the locations of individual wheat plants asxandycoordinates. We used a simple quantitative measure, Morisita's index, to measure the degree of spatial uniformity. Increased crop density resulted in reduced weed biomass and increased crop biomass every year, but crop pattern had significant effects on weed and crop biomass in the first year only. Weather conditions during the second and third years were very dry, resulting in very low weed biomass production. We hypothesize that water deficiency increased the importance of belowground relative to aboveground competition by reducing biomass production, making competition more size symmetric, and reducing the effect of crop spatial pattern on weed growth. The results indicate that increased crop density in cereals can play an important role in increasing the crop's competitive advantage over weeds, and that spatial uniformity maximizes the effect of density when low resource levels or abiotic stress do not limit total biomass production.


2013 ◽  
Vol 53 (4) ◽  
pp. 364-374 ◽  
Author(s):  
Sylwia Kaczmarek ◽  
Kinga Matysiak ◽  
Kazimierz Adamczewski

Abstract Field experiments carried out in the 2005-2007 time period were aimed at assessing the use of competitive potential against weeds of spring cereals cultivated in mixtures, for the purpose of reducing the herbicide application selected for the research. In the experiments, a mixture of the active substances, florasulam + 2,4 D (Mustang 306 SE), was applied at a recommended dose (0.5 l/ha) and then at a reduced dose (0.3 l/ha). The research objects were the spring wheat cultivar Bryza, spring barley cultivar Antek, and oat cultivar Cwał. The cereals were grown in two-species mixtures, and in pure sowing. The effect of a decreased herbicide dose was compared to the effect of the recommended dose, and the control. The research included two-time analysis of crop weed infestation (weed species composition, number, and fresh weight of weeds), determination of the number of productive culms, number of grains per ear (panicle), the thousand grain weight, and grain yield of spring cereals. The obtained results confirmed that spring cereals cultivated in mixtures had a higher competitive potential against weeds in comparison with individual species which were pure sowed. The use of the reduced herbicide dose proved to be effective in weed control and ensured a significant increase in grain yields of spring cereals. The applied herbicide doses did not affect grain number per ear and the thousand grain weight.


2011 ◽  
Vol 49 (No. 8) ◽  
pp. 337-345 ◽  
Author(s):  
J. Kubát ◽  
J. Klír ◽  
D. Pova

Long-term field experiments conducted under different soil and climate conditions and their databases provide invaluable information and are indispensable means in the study of the productivity and sustainability of the soil management systems. We evaluated the results of the dry matter yields of the main products obtained with four variants of organic and mineral fertilisation in three long-term field experiments established in 1955. The experiments differed in the cultivated crops. The period of evaluation was 12 and 16 years (1985&ndash;2000), respectively. The productivity of nine-year crop rotation was lower with the fertilised variants than that with the alternative growing of spring wheat and sugar beets. The dry matter yields on the Nil variants, however, were higher in the crop rotation than in the alternate sugar beet and spring wheat growing, apparently due to the symbiotic nitrogen fixation. The dry matter yields of sugar beet and mainly of spring wheat declined in almost all variants of fertilisation in the alternate sugar beet and spring wheat growing, over the evaluated time period. In spite of the relatively high dry matter production, the declining yields indicated a lower sustainability of the alternate cropping system. Both organic and mineral fertilisation increased the production of the cultivated crops. The differences in the average dry matter yields were statistically significant. Both organic and mineral fertilisation enhanced significantly the N-uptake by the cultivated crops. The effectivity of nitrogen input was the highest with the alternate cropping of sugar beet and spring wheat indicating that it was more demanding for the external N-input and thus less sustainable than nine-year crop rotation.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 461
Author(s):  
Gourav Sharma ◽  
Swati Shrestha ◽  
Sudip Kunwar ◽  
Te-Ming Tseng

Weeds are among the major constraints to any crop production system, reducing productivity and profitability. Herbicides are among the most effective methods to control weeds, and reliance on herbicides for weed control has increased significantly with the advent of herbicide-resistant crops. Unfortunately, over-reliance on herbicides leads to environmental-health issues and herbicide-resistant weeds, causing human health and ecological concerns. Crop diversification can help manage weeds sustainably in major crop production systems. It acts as an organizing principle under which technological innovations and ecological insights can be combined to manage weeds sustainably. Diversified cropping can be defined as the conscious inclusion of functional biodiversity at temporal and/or spatial levels to improve the productivity and stability of ecosystem services. Crop diversification helps to reduce weed density by negatively impacting weed seed germination and weed growth. Additionally, diversified farming systems are more resilient to climate change than monoculture systems and provide better crop yield. However, there are a few challenges to adopting a diversified cropping system, ranging from technology innovations, government policies, farm-level decisions, climate change, and market conditions. In this review, we discuss how crop diversification supports sustainable weed management, the challenges associated with it, and the future of weed management with respect to the diversification concept.


Weed Science ◽  
1999 ◽  
Vol 47 (6) ◽  
pp. 750-756 ◽  
Author(s):  
Jianhua Zhang ◽  
Maria L. Salas ◽  
Nicholas R. Jordan ◽  
Stephen C. Weller

Field experiments were conducted from 1995 to 1997 to test approaches to managing atrazine-resistantDatura stramonium. Eight weed management programs in aZea maysandGlycine maxrotation were evaluated for their effects on the dynamics of atrazine-resistant and -susceptibleD. stramoniumpopulations. OverallD. stramoniumdensity and relative abundance of resistant (R) biotypes were greatly reduced in no-tillSecale cerealeL. (rye) cover crop management programs without triazine compared to conventional-tillage systems with the application of triazine herbicides. The negative effects of no-till onD. stramoniumwere greater under aG. max–Z. mays—G. max(SCS) rotation than under aZ. mays–G. max—Z. mays(CSC) rotation. A cropping system involving moreG. maxphases under no-till reduced both the resistant and susceptibleD. stramoniumpopulations. Results from this study support the use of soil management, crop rotation, and negative cross-resistant herbicides to manage atrazine-resistant biotypes.


Sign in / Sign up

Export Citation Format

Share Document