APPLICATIONS OF NUMERICAL FLOW MODELLING TO HIGH-PERFORMANCE HEAT TRANSFER SURFACES

Author(s):  
Keith N. Atkinson ◽  
Radenko Drakulic ◽  
Morgan R. Heikal ◽  
Christopher A. McNab
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3298
Author(s):  
Gianpiero Colangelo ◽  
Brenda Raho ◽  
Marco Milanese ◽  
Arturo de Risi

Nanofluids have great potential to improve the heat transfer properties of liquids, as demonstrated by recent studies. This paper presents a novel idea of utilizing nanofluid. It analyzes the performance of a HVAC (Heating Ventilation Air Conditioning) system using a high-performance heat transfer fluid (water-glycol nanofluid with nanoparticles of Al2O3), in the university campus of Lecce, Italy. The work describes the dynamic model of the building and its heating and cooling system, realized through the simulation software TRNSYS 17. The use of heat transfer fluid inseminated by nanoparticles in a real HVAC system is an innovative application that is difficult to find in the scientific literature so far. This work focuses on comparing the efficiency of the system working with a traditional water-glycol mixture with the same system that uses Al2O3-nanofluid. The results obtained by means of the dynamic simulations have confirmed what theoretically assumed, indicating the working conditions of the HVAC system that lead to lower operating costs and higher COP and EER, guaranteeing the optimal conditions of thermo-hygrometric comfort inside the building. Finally, the results showed that the use of a nanofluid based on water-glycol mixture and alumina increases the efficiency about 10% and at the same time reduces the electrical energy consumption of the HVAC system.


2021 ◽  
Author(s):  
Guilin Liu ◽  
Jing Liu

Abstract The increasingly high power density of today's electronic devices requires the cooling techniques to produce highly effective heat dissipation performance with as little sacrifice as possible to the system compactness. Among the currently available thermal management schemes, the convective liquid metal cooling provides considerably high performance due to their unique thermal properties. This paper firstly reviews the studies on convective cooling using low-melting-point metals published in the past few decades. A group of equations for the thermophysical properties of In-Ga-Sn eutectic alloy is then documented by rigorous literature examination, following by a section of correlations for the heat transfer and flow resistance calculation to partially facilitate the designing work at the current stage. The urgent need to investigate the heat transfer and flow resistance of forced convection of low-melting-point metals in small/mini-channels, typical in compact electronic devices, is carefully argued. Some special aspects pertaining to the practical application of this cooling technique, including the entrance effect, mixed convection, and compact liquid metal heat exchanger design, are also discussed. Finally, future challenges and prospects are outlined.


Author(s):  
Andrew P. S. Wheeler ◽  
Richard D. Sandberg

In this paper we use direct numerical simulation to investigate the unsteady flow over a model turbine blade-tip at engine scale Reynolds and Mach numbers. The DNS is performed with a new in-house multi-block structured compressible Navier-Stokes solver purposely developed for exploiting high-performance computing systems. The particular case of a transonic tip flow is studied since previous work has suggested compressibility has an important influence on the turbulent nature of the separation bubble at the inlet to the gap and subsequent flow reattachment. The effects of free-stream turbulence, cross-flow and pressure-side boundary-layer on the tip flow aerodynamics and heat transfer are investigated. For ‘clean’ in-flow cases we find that even at engine scale Reynolds numbers the tip flow is intermittent in nature (neither laminar nor fully turbulent). The breakdown to turbulence occurs through the development of spanwise modes with wavelengths around 25% of the gap height. Cross-flows of 25% of the streamwise gap exit velocity are found to increase the stability of the tip flow, and to significantly reduce the turbulence production in the separation bubble. This is predicted through in-house linear stability analysis, and confirmed by the DNS. For the case when the inlet flow has free-stream turbulence, viscous dissipation and the rapid acceleration of the flow at the inlet to the tip-gap causes significant distortion of the vorticity field and reductions of turbulence intensity as the flow enters the tip gap. This means that only very high turbulence levels at the inlet to the computational domain significantly affect the tip heat transfer. The DNS results are compared with RANS predictions using the Spalart-Allmaras and k–ω SST turbulence models. The RANS and DNS predictions give similar qualitative features for the tip flow, but the size and shape of the inlet separation bubble and shock positions differ noticeably. The RANS predictions are particularly insensitive to free-stream turbulence.


2018 ◽  
Vol 39 (1) ◽  
pp. 68-75
Author(s):  
S.P. Aadhy ◽  
T. Hema Sinega ◽  
C. Karthikeyan ◽  
S. Akshay ◽  
Mohan Kumar Pitchan ◽  
...  

Abstract This work investigates the possibility of using polyetherimide (PEI) as an energy saving alternative to glass, polymethylmethacrylate (PMMA) and polycarbonate (PC) by carrying out heat transfer analysis and suggests vaporized solvent bonding as a viable bonding technique for the fabrication of PEI. By heat transfer analysis using building energy simulation, it is observed that less energy is expended for space-conditioning of a building with windows made of PEI when compared to glass, PMMA and PC. The compression moulding technique is used to mould PEI and fabrication is done using a solvent mixture of dimethyl sulfoxide and tetrahydrofuran in 1:1 ratio. The optical properties of the bonded specimen are studied using UV-visible spectrophotometry and it is found that PEI does not allow UV wavelength radiation to pass through while transmitting visible wavelengths. The mechanical strength of the bond is tested using lap shear tensile strength test and the type of failure is observed to be cohesive from the structure. This is indicative of the fact that using this particular solvent to bond PEI results in the maximum possible strength.


2013 ◽  
Vol 10 (1) ◽  
pp. 40-47 ◽  
Author(s):  
Aparna Aravelli ◽  
Singiresu S. Rao ◽  
Hari K. Adluru

Increased heat generation in semiconductor devices for demanding applications leads to the investigation of highly efficient cooling solutions. Effective options for thermal management include passing of cooling liquid through the microchannel heat sink and using highly conductive materials. In the author's previous work, experimental and computational analyses were performed on LTCC substrates using embedded silver vias and silver columns forming microchannels. This novel technique of embedding silver vias along with forced convection using a coolant resulted in higher heat transfer rates. The present work investigates the design optimization of this cooling system (microheat exchanger) using systems optimization theory. A new multiobjective optimization problem was formulated for the heat transfer in the LTCC model using the log mean temperature difference (LMTD) method of heat exchangers. The goal is to maximize the total heat transferred and to minimize the coolant pumping power. Structural and thermal design variables are considered to meet the manufacturability and energy requirements. Pressure loss and volume of the silver metal are used as constraints. A hybrid optimization technique using sequential quadratic programming (SQP) and branch and bound method of integer programming has been developed to solve the microheat exchanger problem. The optimal design is presented and sensitivity analysis results are discussed.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1899 ◽  
Author(s):  
Haiwei Yang ◽  
Zongqian Wang ◽  
Zhi Liu ◽  
Huan Cheng ◽  
Changlong Li

Aerogel fiber, with the characteristics of ultra-low density, ultra-high porosity, and high specific surface area, is the most potential candidate for manufacturing wearable thermal insulation material. However, aerogel fibers generally show weak mechanical properties and complex preparation processes. Herein, through firstly preparing a cellulose acetate/polyacrylic acid (CA/PAA) hollow fiber using coaxial wet-spinning followed by injecting the silk fibroin (SF) solution into the hollow fiber, the CA/PAA-wrapped SF aerogel fibers toward textile thermal insulation were successfully constructed after freeze-drying. The sheath (CA/PAA hollow fiber) possesses a multiscale porous structure, including micropores (11.37 ± 4.01 μm), sub-micron pores (217.47 ± 46.16 nm), as well as nanopores on the inner (44.00 ± 21.65 nm) and outer (36.43 ± 17.55 nm) surfaces, which is crucial to the formation of a SF aerogel core. Furthermore, the porous CA/PAA-wrapped SF aerogel fibers have many advantages, such as low density (0.21 g/cm3), high porosity (86%), high strength at break (2.6 ± 0.4 MPa), as well as potential continuous and large-scale production. The delicate structure of multiscale porous sheath and ultra-low-density SF aerogel core synergistically inhibit air circulation and limit convective heat transfer. Meanwhile, the high porosity of aerogel fibers weakens heat transfer and the SF aerogel cellular walls prevent infrared radiation. The results show that the mat composed of these aerogel fibers exhibits excellent thermal insulating properties with a wide working temperature from −20 to 100 °C. Therefore, this SF-based aerogel fiber can be considered as a practical option for high performance thermal insulation.


Sign in / Sign up

Export Citation Format

Share Document