Temperature Field of a One-Dimensional Coaxial Absorbing Wall

1998 ◽  
Vol 52 (4) ◽  
pp. 52-55
Author(s):  
V. M. Volkov ◽  
S. A. Bortnik
1973 ◽  
Vol 95 (2) ◽  
pp. 250-256 ◽  
Author(s):  
T. E. Cooper ◽  
J. P. Groff

This paper discusses the use of heat for producing clinical lesions in tissue and presents the design and analysis of a resistively heated surgical probe. The probe surface temperature is accurately maintained and controlled by using a Wheatstone bridge. The probe was embedded in a clear agar–water test medium, and the temperature field generated by the probe was measured with liquid crystals, a material that provides a visual display of certain isotherms. Experimental results compare within approximately 10 percent of a two-dimensional numerical solution. A one-dimensional theoretical model is also developed which examines the influence of blood flow on the temperature field.


Determination of heat exchange between a solid and the environment is a significant inverse thermal physical problem. This heat exchange law irrespective of its nature can be defined easier if mean temperature of such solid is known. When mean temperature of the solid and speed of its change are known, it becomes possible to determine heat flow on the boundary of the solid. In its turn, when heat flow on the boundary, temperature on the boundary and ambient temperature are defined, heat exchange coefficient can be established. Therefore, the main attention is paid to a manner how mean temperature of a solid can be determined in the article. Examining inverse heat transfer problems, input data consist of measurements taken in temperature field as simple as possible mathematically in laboratory conditions. Hence, a symmetrical one-dimensional temperature field is discussed in the article


1974 ◽  
Vol 96 (3) ◽  
pp. 415-420 ◽  
Author(s):  
T. E. Cooper ◽  
W. K. Petrovic

Liquid crystals, a material that exhibits brilliant changes in color over narrow temperature bands, have been successfully used to study the temperature field that is produced by a cryosurgical cannula (cryoprobe). Cryoprobe tip temperatures ranging from −36 to −117 C were used to produce frozen regions in a clear gel. Experimental results compare within experimental uncertainty with results of a one-dimensional analytical solution for predicting ice growth rates.


2003 ◽  
Vol 125 (2) ◽  
pp. 226-234 ◽  
Author(s):  
Alfonso Ortega ◽  
Shankar Ramanathan

Analytical solutions are presented for the temperature field that arises from the application of a source of heat on an adiabatic plate or board when the fluid is represented as a uniform flow with an effective turbulent diffusivity, i.e., the so-called UFED flow model. Solutions are summarized for a point source, a one-dimensional strip source, and a rectangular source of heat. The ability to superpose the individual kernel solutions to obtain the temperature field due to multiple sources is demonstrated. The point source solution reveals that the N−1 law commonly observed for the centerline thermal wake decay for three-dimensional arrays is predicted by the point source solution for the UFED model. Examination of the solution for rectangular sources shows that the thermal wake approaches the point source behavior downstream from the source, suggesting a new scaling for the far thermal wake based on the total component power and a length scale given by ε/U. The new scaling successfully collapses the thermal wake for several sizes of components and provides a fundamental basis for experimental observations previously made for arrays of three-dimensional components.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Jianhua Wang ◽  
Junxiang Shi

To compare five kinds of different boundary conditions (BCs), an analytical solution of a steady and one-dimensional problem of transpiration cooling described by a local thermal nonequilibrium (LTNE) model is presented in this work. The influence of the five BCs on temperature field and thermal effectiveness is discussed using the analytical solution. Two physical criteria, if the analytical solution of coolant temperature may be higher than hot gas temperature at steady state and if the variation trend of thermal effectiveness with coolant mass flow rate at hot surface is reasonable, are used to estimate the five BCs. Through the discussions, it is confirmed which BCs at all conditions are usable, which BCs under certain conditions are usable, and which BCs are thoroughly unreasonable.


2013 ◽  
Vol 17 (5) ◽  
pp. 1453-1458
Author(s):  
Liang-Hui Qu ◽  
Feng Ling ◽  
Lin Xing

A finite difference approach to a one-dimensional Stefan problem with periodic boundary conditions is studied. The evolution of the moving boundary and the temperature field are simulated numerically, and the effects of the Stefan number and the periodical boundary condition on the temperature distribution and the evolution of the moving boundary are analyzed.


1971 ◽  
Vol 38 (1) ◽  
pp. 47-50 ◽  
Author(s):  
R. P. Shaw ◽  
F. A. Cozzarelli

Analytical solutions are obtained for stress, velocity, and strain at the wave front in a suddenly loaded semi-infinite rod of a material with a linear instantaneous response and nonlinear inelastic response. The material properties are assumed to depend on position directly or through a dependence on a prescribed nonuniform temperature field. Detailed solutions are obtained for two examples—a nonlinear viscoelastic material with temperature dependent parameters and a rate-sensitive plastic material which may have temperature dependent parameters and yield point.


2021 ◽  
pp. 165-165
Author(s):  
Kun Li ◽  
Shiquan Shan ◽  
Qi Zhang ◽  
Xichuan Cai ◽  
Zhou Zhijun

In this paper, a computational method for solving for the one-dimensional heat conduction temperature field is proposed based on a data-driven approach. The traditional numerical solution requires algebraic processing of the heat conduction differential equations, and necessitates the use of a complex mathematical derivation process to solve for the temperature field. In this paper, a temperature field solution model called HTM (Hidden Temperature Method) is proposed. This model uses an artificial neural network to establish the correspondence relationship of the node temperature values during the iterative process, so as to obtain the "Data to Data" solution. In this work, one example of one-dimensional steady state and three examples of one-dimensional transient state are selected, and the calculated values are compared to those obtained by traditional numerical methods. The mean-absolute error(MAE)of the steady state is only 0.2508, and among the three transient cases, the maximum mean-square error(MSE) is only 2.6875, indicating that the model is highly accurate in both steady-state and transient conditions. This shows that the HTM simulation can be applied to the solution of the heat conduction temperature field. This study provides a basis for the further optimization of the HTM algorithm.


2020 ◽  
Vol 19 (1) ◽  
pp. 66
Author(s):  
J. R. F. Oliveira ◽  
J. A. dos Santos Jr. ◽  
J. G. do Nascimento ◽  
S. S. Ribeiro ◽  
G. C. Oliveira ◽  
...  

Through the present work the authors determined the analytical solution of a transient two-dimensional heat conduction problem using Green’s Functions (GF). This method is very useful for solving cases where heat conduction is transient and whose boundary conditions vary with time. Boundary conditions of the problem in question, with rectangular geometry, are of the prescribed temperature type - prescribed flow in the direction x and prescribed flow - prescribed flow in the direction y, implying in the corresponding GF given by GX21Y22. The initial temperature of the space domain is assumed to be different from the prescribed temperature occurring at one of the boundaries along x. The temperature field solution of the two-dimensional problem was determined. The intrinsic verification of this solution was made by comparing the solution of a 1D problem. This was to consider the incident heat fluxes at y = 0 and y = 2b tending to zero, thus making the problem one-dimensional, with corresponding GF given by GX21. When comparing the results obtained in both cases, for a time of t = 1 s, it was seen that the temperature field of both was very similar, which validates the solution obtained for the 2D problem.


Sign in / Sign up

Export Citation Format

Share Document