scholarly journals The role of signal transducer and activator of transcription 5 in the inhibitory effects of GH on adipocyte differentiation

2003 ◽  
Vol 30 (2) ◽  
pp. 139-150 ◽  
Author(s):  
HE Richter ◽  
T Albrektsen ◽  
N Billestrup

GH inhibits primary rat preadipocyte differentiation and expression of late genes required for terminal differentiation. Here we show that GH-mediated inhibition of fatty acid-binding protein aP2 gene expression correlates with the activation of the Janus kinase-2/signal transducer and activator of transcription (STAT)-5 signalling pathway. Within minutes of treatment, GH induced the tyrosine phosphorylation, nuclear localization and DNA binding of STAT5. Importantly, there was no evidence that STAT5 acted via an interaction with peroxisome proliferator-activated receptor gamma. To further understand the mechanism of STAT5 action, we reconstituted the inhibition of aP2 in a non-adipogenic cell line. Using this system, we showed that the ability of GH to inhibit a 520 bp aP2 reporter was largely dependent upon the presence of either STAT5A or STAT5B. Mutant analysis confirmed that the tyrosine phosphorylation of STAT5 was essential for this signalling. However, STAT5's C-terminal transactivation domain was fully dispensable for this inhibition. Taken together, these data confirm a key regulatory role of STAT5 in adipose tIssue and point to STAT5 as the repressing modulator of GH-mediated inhibition in primary preadipocytes.

2016 ◽  
Vol 36 (6) ◽  
Author(s):  
Bohan Cheng ◽  
Mengqi Wu ◽  
Songsong Xu ◽  
Xinyang Zhang ◽  
Yuxiang Wang ◽  
...  

Chicken preadipocytes cultured in cocktail supplement with rosiglitazone resulted in a marked increase in lipid droplet accumulation, glycerol-3-phosphate dehydrogenase (GPDH) activity and mRNA expression of adipocyte fatty acid-binding protein (aP2), G0/G1 switch gene 2 (G0S2), peroxisome proliferator-activated receptor γ (PPARγ) and lipolysis. The present study provides a novel induction method for in vitro chicken preadipocyte differentiation.


2012 ◽  
Vol 287 (15) ◽  
pp. 12241-12249 ◽  
Author(s):  
Anandi Sawant ◽  
Diptiman Chanda ◽  
Tatyana Isayeva ◽  
George Tsuladze ◽  
W. T. Garvey ◽  
...  

Noggin is a glycosylated-secreted protein known so far for its inhibitory effects on bone morphogenetic protein (BMP) signaling by sequestering the BMP ligand. We report here for the first time a novel mechanism by which noggin directly induces adipogenesis of mesenchymal stem cells independently of major human adipogenic signals through C/EBPδ, C/EBPα and peroxisome proliferator-activated receptor-γ. Evaluation of a possible mechanism for noggin-induced adipogenesis of mesenchymal stem cells identified the role of Pax-1 in mediating such differentiation. The relevance of elevated noggin levels in obesity was confirmed in a preclinical, immunocompetent mouse model of spontaneous obesity and in human patients with higher body mass index. These data clearly provide a novel role for noggin in inducing adipogenesis and possibly obesity and further indicates the potential of noggin as a therapeutic target to control obesity.


PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Lai Wang ◽  
Yvonne Y. Shao ◽  
R. Tracy Ballock

Leptin is an obesity-associated cytokine-like hormone encoded by theobgene. Recent studies reveal that leptin promotes proliferation and differentiation of chondrocytes, suggesting a peripheral role of leptin in regulating growth plate function. Peroxisome proliferator-activated receptor-γ(PPARγ) is a transcriptional regulator of adipogenesis. Locally, PPARγnegatively regulates chondrogenic differentiation and terminal differentiation in the growth plate. The aim of this study was to test the hypothesis that leptin may suppress the inhibitory effects of PPARγon growth plate chondrocytes. Chondrocytes were collected from distal femoral growth plates of newborn rats and were cultured in monolayer or cell pellets in the presence or absence of leptin and the PPARγagonist ciglitazone. The results show that leptin attenuates the suppressive effects of PPARγon chondrogenic differentiation and T3-mediated chondrocyte hypertrophy. Leptin treatment also leads to a mild downregulation of PPAR mRNA expression and a significant MAPK/ERK-dependent PPARγphosphorylation at serine 112/82. Blocking MAPK/ERK function with PD98059 confirmed that leptin antagonizes PPARγfunction in growth plate chondrocytes through the MAPK/ERK signaling pathway. Furthermore, leptin signaling in growth plate cells is also negatively modulated by activation of PPARγ, implying that these two signaling pathways are mutually regulated in growth plate chondrocytes.


2019 ◽  
Vol 26 (25) ◽  
pp. 4726-4748 ◽  
Author(s):  
Theodora Tzanavari ◽  
Jason Tasoulas ◽  
Chrysoula Vakaki ◽  
Chrysovalantou Mihailidou ◽  
Gerasimos Tsourouflis ◽  
...  

Adipokines constitute a family of protein factors secreted by white adipose tissue (WAT), that regulate the functions of WAT and other sites. Leptin, adiponectin and resistin, are the main adipokines present in serum and saliva, targeting several tissues and organs, including vessels, muscles, liver and pancreas. Besides body mass regulation, adipokines affect glucose homeostasis, inflammation, angiogenesis, cell proliferation and apoptosis, and other crucial cell procedures. Their involvement in tumor formation and growth is well established and deregulation of adipokine and adipokine receptors’ expression is observed in several malignancies including those located in the head and neck region. Intracellular effects of adipokines are mediated by a plethora of receptors that activate several signaling cascades including Janus kinase/ Signal transducer and activator of transcription (JAK/ STAT pathway), Phospatidylinositol kinase (PI3/ Akt/ mTOR) and Peroxisome proliferator-activated receptor (PPAR). The present review summarizes the current knowledge on the role of adipokines family members in carcinogenesis of the head and neck region. The diagnostic and prognostic significance of adipokines and their potential role as serum and saliva biomarkers are also discussed.


Author(s):  
Rana A. Alaaeddine ◽  
Perihan A. Elzahhar ◽  
Ibrahim AlZaim ◽  
Wassim Abou-Kheir ◽  
Ahmed S.F. Belal ◽  
...  

: Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro-and anti-tumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarize the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 734
Author(s):  
Pietro Antonuccio ◽  
Herbert Ryan Marini ◽  
Antonio Micali ◽  
Carmelo Romeo ◽  
Roberta Granese ◽  
...  

Varicocele is an age-related disease with no current medical treatments positively impacting infertility. Toll-like receptor 4 (TLR4) expression is present in normal testis with an involvement in the immunological reactions. The role of peroxisome proliferator-activated receptor-α (PPAR-α), a nuclear receptor, in fertility is still unclear. N-Palmitoylethanolamide (PEA), an emerging nutraceutical compound present in plants and animal foods, is an endogenous PPAR-α agonist with well-demonstrated anti-inflammatory and analgesics characteristics. In this model of mice varicocele, PPAR-α and TLR4 receptors’ roles were investigated through the administration of ultra-micronized PEA (PEA-um). Male wild-type (WT), PPAR-α knockout (KO), and TLR4 KO mice were used. A group underwent sham operation and administration of vehicle or PEA-um (10 mg/kg i.p.) for 21 days. Another group (WT, PPAR-α KO, and TLR4 KO) underwent surgical varicocele and was treated with vehicle or PEA-um (10 mg/kg i.p.) for 21 days. At the end of treatments, all animals were euthanized. Both operated and contralateral testes were processed for histological and morphometric assessment, for PPAR-α, TLR4, occludin, and claudin-11 immunohistochemistry and for PPAR-α, TLR4, transforming growth factor-beta3 (TGF-β3), phospho-extracellular signal-Regulated-Kinase (p-ERK) 1/2, and nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) Western blot analysis. Collectively, our data showed that administration of PEA-um revealed a key role of PPAR-α and TLR4 in varicocele pathophysiology, unmasking new nutraceutical therapeutic targets for future varicocele research and supporting surgical management of male infertility.


2021 ◽  
Vol 11 (15) ◽  
pp. 7120
Author(s):  
Mirko Pesce ◽  
Irene La Fratta ◽  
Teresa Paolucci ◽  
Alfredo Grilli ◽  
Antonia Patruno ◽  
...  

The beneficial effects of exercise on the brain are well known. In general, exercise offers an effective way to improve cognitive function in all ages, particularly in the elderly, who are considered the most vulnerable to neurodegenerative disorders. In this regard, myokines, hormones secreted by muscle in response to exercise, have recently gained attention as beneficial mediators. Irisin is a novel exercise-induced myokine, that modulates several bodily processes, such as glucose homeostasis, and reduces systemic inflammation. Irisin is cleaved from fibronectin type III domain containing 5 (FNDC5), a transmembrane precursor protein expressed in muscle under the control of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). The FNDC5/irisin system is also expressed in the hippocampus, where it stimulates the expression of the neurotrophin brain-derived neurotrophic factor in this area that is associated with learning and memory. In this review, we aimed to discuss the role of irisin as a key mediator of the beneficial effects of exercise on synaptic plasticity and memory in the elderly, suggesting its roles within the main promoters of the beneficial effects of exercise on the brain.


2021 ◽  
Vol 22 (9) ◽  
pp. 4670
Author(s):  
Cinzia Buccoliero ◽  
Manuela Dicarlo ◽  
Patrizia Pignataro ◽  
Francesco Gaccione ◽  
Silvia Colucci ◽  
...  

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a protein that promotes transcription of numerous genes, particularly those responsible for the regulation of mitochondrial biogenesis. Evidence for a key role of PGC1α in bone metabolism is very recent. In vivo studies showed that PGC1α deletion negatively affects cortical thickness, trabecular organization and resistance to flexion, resulting in increased risk of fracture. Furthermore, in a mouse model of bone disease, PGC1α activation stimulates osteoblastic gene expression and inhibits atrogene transcription. PGC1α overexpression positively affects the activity of Sirtuin 3, a mitochondrial nicotinammide adenina dinucleotide (NAD)-dependent deacetylase, on osteoblastic differentiation. In vitro, PGC1α overexpression prevents the reduction of mitochondrial density, membrane potential and alkaline phosphatase activity caused by Sirtuin 3 knockdown in osteoblasts. Moreover, PGC1α influences the commitment of skeletal stem cells towards an osteogenic lineage, while negatively affects marrow adipose tissue accumulation. In this review, we will focus on recent findings about PGC1α action on bone metabolism, in vivo and in vitro, and in pathologies that cause bone loss, such as osteoporosis and type 2 diabetes.


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Jaou-Chen Huang

Peroxisome proliferator-activated receptorδ(PPARδ, also known as PPARβ) has ubiquitous distribution and extensive biological functions. The reproductive function of PPARδwas first revealed in the uterus at the implantation site. Since then, PPARδand its ligand have been discovered in all reproductive tissues, including the gametes and the preimplantation embryos. PPARδin preimplantation embryos is normally activated by oviduct-derived PPARδligand. PPARδactivation is associated with an increase in embryonic cell proliferation and a decrease in programmed cell death (apoptosis). On the other hand, the role of PPARδand its ligand in gamete formation and function is less well understood. This review will summarize the reproductive functions of PPARδand project its potential applications in assisted reproductive technology.


Sign in / Sign up

Export Citation Format

Share Document