scholarly journals Temporal recruitment of CCAAT/enhancer-binding proteins to early and late adipogenic promoters in vivo

2006 ◽  
Vol 36 (1) ◽  
pp. 139-151 ◽  
Author(s):  
N Salma ◽  
H Xiao ◽  
A N Imbalzano

The CCAAT/enhancer-binding protein (C/EBP) family of transcriptional regulators is critically important for the activation of adipogenic genes during differentiation. The C/EBPβ and δ isoforms are rapidly induced upon adipocyte differentiation and are responsible for activating the adipogenic regulators C/EBPα and peroxisome proliferator activated receptor (PPAR)γ2, which together activate the majority of genes expressed in differentiating adipocytes. However, mitosis is required following the induction of adipogenesis, and the activation of C/EBPα and PPARγ2 gene expression is delayed until cell division is underway. Previous studies have used electromobility shift assays to suggest that this delay is due, at least in part, to a delay between the induction of C/EBPβ protein levels and the acquisition of DNA binding capacity by C/EBPβ. Here we used in vivo chromatin immunoprecipitation analysis of the C/EBPα, PPARγ2, resistin, adiponectin, and leptin promoters to examine the kinetics of C/EBP protein binding to adipogenic genes in differentiating cells. In contrast to prior studies, we determined that C/EBPβ and δ were bound to endogenous regulatory sequences controlling the expression of these genes within 1–4 h of adipogenic induction. These results indicated that C/EBPβ and δ bind not only to genes that are induced early in the adipogenic process but also to genes that are induced much later during differentiation, without a delay between induction of C/EBP protein levels and DNA binding by these proteins. We also showed that each of the genes examined undergoes a transition in vivo from early occupancy by C/EBPβ and δ to occupancy by C/EBPα at times that correlate with the induction of C/EBPα protein levels, demonstrating the generality of the transition during adipogenesis and indicating that the binding of specific C/EBP isoforms does not correlate with timing of expression from each gene. We have concluded that C/EBP family members bind to adipogenic genes in vivo in a manner that follows the induction of C/EBP protein synthesis.

2021 ◽  
Vol 49 (11) ◽  
pp. 030006052110550
Author(s):  
Xing Wang ◽  
Shuchun Chen ◽  
Dan Lv ◽  
Zelin Li ◽  
Luping Ren ◽  
...  

Objective To investigate the effect of liraglutide on the browning of white fat and the suppression of obesity via regulating microRNA (miR)-27b in vivo and in vitro. Methods Sprague-Dawley rats were fed a high-fat (HF) diet and 3T3-L1 pre-adipocytes were differentiated into mature white adipocytes. Rats and mature adipocytes were then treated with different doses of liraglutide. The mRNA and protein levels of browning-associated proteins, including uncoupling protein 1 (UCP1), PR domain containing 16 (PRDM16), CCAAT enhancer binding protein β (CEBPβ), cell death-inducing DFFA-like effector A (CIDEA) and peroxisome proliferator-activated receptor-γ-coactivator 1α (PGC-1α), were detected using quantitative real-time polymerase chain reaction and Western blotting. Results Liraglutide decreased body weight and reduced the levels of blood glucose, triglyceride and low-density lipoprotein cholesterol in HF diet-fed rats. Liraglutide increased the levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α in vivo and vitro. The levels of miR-27b were upregulated in HF diet-fed rats, whereas liraglutide reduced the levels of miR-27b. In vitro, overexpression of miR-27b decreased the mRNA and protein levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α. Transfection with the miR-27b mimics attenuated the effect of liraglutide on the browning of white adipocytes. Conclusion Liraglutide induced browning of white adipose through regulation of miR-27b.


2011 ◽  
Vol 301 (6) ◽  
pp. L881-L891 ◽  
Author(s):  
Bum-Yong Kang ◽  
Jennifer M. Kleinhenz ◽  
Tamara C. Murphy ◽  
C. Michael Hart

Peroxisome proliferator-activated receptor (PPAR) γ activation attenuates hypoxia-induced pulmonary hypertension (PH) in mice. The current study examined the hypothesis that PPARγ attenuates hypoxia-induced endothelin-1 (ET-1) signaling to mediate these therapeutic effects. To test this hypothesis, human pulmonary artery endothelial cells (HPAECs) were exposed to normoxia or hypoxia (1% O2) for 72 h and treated with or without the PPARγ ligand rosiglitazone (RSG, 10 μM) during the final 24 h of exposure. HPAEC proliferation was measured with MTT assays or cell counting, and mRNA and protein levels of ET-1 signaling components were determined. To explore the role of hypoxia-activated transcription factors, selected HPAECs were treated with inhibitors of hypoxia-inducible factor (HIF)-1α (chetomin) or nuclear factor (NF)-κB (caffeic acid phenethyl ester, CAPE). In parallel studies, male C57BL/6 mice were exposed to normoxia (21% O2) or hypoxia (10% O2) for 3 wk with or without gavage with RSG (10 mg·kg−1·day−1) for the final 10 days of exposure. Hypoxia increased ET-1, endothelin-converting enzyme-1, and endothelin receptor A and B levels in mouse lung and in HPAECs and increased HPAEC proliferation. Treatment with RSG attenuated hypoxia-induced activation of HIF-1α, NF-κB activation, and ET-1 signaling pathway components. Similarly, treatment with chetomin or CAPE prevented hypoxia-induced increases in HPAEC ET-1 mRNA and protein levels. These findings indicate that PPARγ activation attenuates a program of hypoxia-induced ET-1 signaling by inhibiting activation of hypoxia-responsive transcription factors. Targeting PPARγ represents a novel therapeutic strategy to inhibit enhanced ET-1 signaling in PH pathogenesis.


2016 ◽  
Vol 37 (2) ◽  
Author(s):  
Young-Kwon Park ◽  
Kai Ge

ABSTRACT Dexamethasone (DEX), a synthetic ligand for glucocorticoid receptor (GR), is routinely used to stimulate adipogenesis in culture. GR-depleted preadipocytes show adipogenesis defects 1 week after induction of differentiation. However, it has remained unclear whether GR is required for adipogenesis in vivo. By deleting GR in precursors of brown adipocytes, we found unexpectedly that GR is dispensable for brown adipose tissue development in mice. In culture, GR-deficient primary or immortalized white and brown preadipocytes showed severely delayed adipogenesis 1 week after induction of differentiation. However, when differentiation was extended to 3 weeks, GR-deficient preadipocytes showed levels of adipogenesis marker expression and lipid accumulation similar to those of the wild-type cells, indicating that DEX-bound GR accelerates, but is dispensable for, adipogenesis. Consistently, DEX accelerates, but is dispensable for, adipogenesis in culture. We show that DEX-bound GR accelerates adipogenesis by directly promoting the expression of adipogenic transcription factors CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, C/EBPδ, KLF5, KLF9, and peroxisome proliferator-activated receptor γ (PPARγ) in the early phase of differentiation. Mechanistically, DEX-bound GR recruits histone H3K27 acetyltransferase CBP to promote activation of C/EBPβ-primed enhancers of adipogenic genes. These results clarify the role of GR in adipogenesis in vivo and demonstrate that DEX-mediated activation of GR accelerates, but is dispensable for, adipogenesis.


2017 ◽  
Vol 312 (6) ◽  
pp. R1017-R1028 ◽  
Author(s):  
Hiroaki Eshima ◽  
Shinji Miura ◽  
Nanami Senoo ◽  
Koji Hatakeyama ◽  
David C. Poole ◽  
...  

In skeletal muscle, resting intracellular Ca2+ concentration ([Ca2+]i) homeostasis is exquisitely regulated by Ca2+ transport across the sarcolemmal, mitochondrial, and sarcoplasmic reticulum (SR) membranes. Of these three systems, the relative importance of the mitochondria in [Ca2+]i regulation remains poorly understood in in vivo skeletal muscle. We tested the hypothesis that the capacity for Ca2+ uptake by mitochondria is a primary factor in determining [Ca2+]i regulation in muscle at rest and following contractions. Tibialis anterior muscle of anesthetized peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)-overexpressing (OE, increased mitochondria model) and wild-type (WT) littermate mice was exteriorized in vivo and loaded with the fluorescent probe fura 2-AM, and Rhod 2-AM Ca2+ buffering and mitochondrial [Ca2+] were evaluated at rest and during recovery from fatiguing tetanic contractions induced by electrical stimulation (120 s, 100 Hz). In addition, the effects of pharmacological inhibition of SR (thapsigargin) and mitochondrial [carbonyl cyanide- 4-(trifluoromethoxy) phenylhydrazone (FCCP)] function were examined at rest. [Ca2+]i in WT remained elevated for the entire postcontraction recovery period (+6 ± 1% at 450 s), but in PGC-1α OE [Ca2+]i returned to resting baseline within 150 s. Thapsigargin immediately and substantially increased resting [Ca2+]i in WT, whereas in PGC-1α OE this effect was delayed and markedly diminished (WT, +12 ± 3; PGC-1α OE, +1 ± 2% at 600 s after thapsigargin treatment, P < 0.05). FCCP abolished this improvement of [Ca2+]i regulation in PGC-1α OE. Mitochondrial [Ca2+] accumulation was observed in PGC-1α OE following contractions and thapsigargin treatment. In the SR, PGC-1α OE downregulated SR Ca2+-ATPase 1 (Ca2+ uptake) and parvalbumin (Ca2+ buffering) protein levels, whereas mitochondrial Ca2+ uptake-related proteins (Mfn1, Mfn2, and mitochondrial Ca2+ uniporter) were upregulated. These data demonstrate a heretofore unappreciated role for skeletal muscle mitochondria in [Ca2+]i regulation in vivo following fatiguing tetanic contractions and at rest.


Endocrinology ◽  
2004 ◽  
Vol 145 (11) ◽  
pp. 4948-4956 ◽  
Author(s):  
Masataka Kudo ◽  
Akira Sugawara ◽  
Akira Uruno ◽  
Kazuhisa Takeuchi ◽  
Sadayoshi Ito

Abstract TNFα is known to inhibit adipocyte differentiation and induce insulin resistance. Moreover, TNFα is known to down-regulate peroxisome proliferator-activated receptor (PPAR)γ2, an adipocyte-specific nuclear receptor of insulin-sensitizer thiazolidinediones. To clarify molecular mechanisms of TNFα- mediated PPARγ2 down-regulation, we here examined the effect of TNFα on transcription regulation of PPARγ2 gene expression during the early stage of adipocyte differentiation. 3T3-L1 preadipocytes (2 d after 100% confluent) were incubated in a differentiation mixture (dexamethasone, insulin, 3-isobutyl-1-methlxanthine), with or without 50 ng/ml TNFα, for 24 h. TNFα significantly decreased PPARγ2 expression both at mRNA and protein levels (to ∼40%), as well as aP2 mRNA expression. The mouse PPARγ2 gene promoter region (2.2-kb) was isolated and was used for luciferase reporter assays by transient transfection. TNFα significantly suppressed PPARγ2 gene transcription (to ∼50%), and deletion analyses demonstrated that the suppression was mediated via CCAAT/enhancer-binding protein (C/EBP) binding elements at the −320/−340 region of the promoter. Moreover, TNFα significantly decreased expression of C/EBPδ mRNA and protein levels (to ∼40%). EMSA, using 3T3-L1 cells nuclear extracts with the −320/−340 region as a probe, demonstrated the binding of C/EBPδ to the element, which was significantly decreased by TNFα treatment. Overexpression of CEBP/δ prevented the TNFα-mediated suppression of PPARγ2 transactivation. Taken together, TNFα suppresses PPARγ2 gene transcription by the inhibition of C/EBPδ expression and its DNA binding during the early stage of adipocyte differentiation, which may contribute to the inhibition of adipocyte differentiation, as well as the induction of insulin resistance.


2007 ◽  
Vol 27 (6) ◽  
pp. 2359-2371 ◽  
Author(s):  
Hao Ying ◽  
Osamu Araki ◽  
Fumihiko Furuya ◽  
Yasuhito Kato ◽  
Sheue-Yann Cheng

ABSTRACT Thyroid hormone (T3) is critical for growth, differentiation, and maintenance of metabolic homeostasis. Mice with a knock-in mutation in the thyroid hormone receptor α gene (TRα1PV) were created previously to explore the roles of mutated TRα1 in vivo. TRα1PV is a dominant negative mutant with a frameshift mutation in the carboxyl-terminal 14 amino acids that results in the loss of T3 binding and transcription capacity. Homozygous knock-in TRα1PV/PV mice are embryonic lethal, and heterozygous TRα1PV/+ mice display the striking phenotype of dwarfism. These mutant mice provide a valuable tool for identifying the defects that contribute to dwarfism. Here we show that white adipose tissue (WAT) mass was markedly reduced in TRα1PV/+ mice. The expression of peroxisome proliferator-activated receptor γ (PPARγ), the key regulator of adipogenesis, was repressed at both mRNA and protein levels in WAT of TRα1PV/+ mice. Moreover, TRα1PV acted to inhibit the transcription activity of PPARγ by competition with PPARγ for binding to PPARγ response elements and for heterodimerization with the retinoid X receptors. The expression of TRα1PV blocked the T3-dependent adipogenesis of 3T3-L1 cells and repressed the expression of PPARγ. Thus, mutations of TRα1 severely affect adipogenesis via cross talk with PPARγ signaling. The present study suggests that defects in adipogenesis could contribute to the phenotypic manifestation of reduced body weight in TRα1PV/+ mice.


2008 ◽  
Vol 104 (1) ◽  
pp. 178-185 ◽  
Author(s):  
Isabella Irrcher ◽  
Donald R. Walkinshaw ◽  
Treacey E. Sheehan ◽  
David A. Hood

Thyroid hormone (T3) regulates the function of many tissues within the body. The effects of T3 have largely been attributed to the modulation of thyroid hormone receptor-dependent gene transcription. However, nongenomic actions of T3 via the initiation of signaling events are emerging in a number of cell types. This study investigated the ability of short-term T3 treatment to phosphorylate and, therefore, activate signaling proteins in rat tissues in vivo. The kinases investigated included p38, AMP-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK) 1/2. Following 2 h of T3 treatment, p38 and AMPK phosphorylation was increased in both the slow-twitch soleus and the fast-twitch plantaris muscles. In contrast, ERK1/2 was not activated in either muscle type. Neither p38 nor AMPK was affected in heart. However, AMPK activation was decreased by T3 in liver. ERK1/2 activation was decreased by T3 in heart, but increased in liver. Possible downstream consequences of T3-induced kinase phosphorylation were investigated by measuring cAMP response element binding protein (CREB) and thyroid hormone receptor DNA binding, as well as peroxisome proliferator-activated receptor-α coactivator-1 mRNA levels. Protein DNA binding to the cAMP or thyroid hormone response elements was unaltered by T3. However, peroxisome proliferator-activated receptor-α coactivator-1 mRNA expression was increased following 12 h of T3 treatment in soleus. These data are the first to characterize the effects of T3 treatment on kinase phosphorylation in vivo. We show that T3 rapidly modifies kinase activity in a tissue-specific fashion. Moreover, the T3-induced phosphorylation of p38 and AMPK in both slow- and fast-twitch skeletal muscles suggests that these events may be important in mediating hormone-induced increases in mitochondrial biogenesis in skeletal muscle.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hye-Lin Kim ◽  
Yong-Deok Jeon ◽  
Jinbong Park ◽  
Hong-Kun Rim ◽  
Mi-Young Jeong ◽  
...  

Obesity is a metabolic disorder characterized by chronic inflammation and dyslipidemia and is a strong predictor for the development of hypertension, diabetes mellitus, and cardiovascular disease. This study examined the antiobesity effect of an ethanol extract of Corni Fructus containing formulation (CDAP), which is a combination of four natural components: Corni Fructus, Dioscoreae Rhizoma, Aurantii Fructus Immaturus, and Platycodonis Radix. The cellular lipid content in 3T3-L1 adipocytes was assessed by Oil Red O staining. Expressions of peroxisome proliferator-activated receptor-γ(PPAR-γ), CCAAT/enhancer-binding protein-α(C/EBP-α), and lipin-1 were determined by real-time RT-PCR. Western blot was used to determine the protein levels of PPAR-γ, C/EBP-α, and AMP-activated protein kinase-α(AMPK-α). The CDAP extract suppressed the differentiation of 3T3-L1 adipocytes by downregulating cellular induction of PPAR-γ, C/EBP-α, and lipin-1. The CDAP extract also significantly upregulated phosphorylation of AMPK-α. Anin vivostudy showed that CDAP induced weight loss in mice with high-fat-diet-induced obesity. These results indicate that CDAP has a potent anti-obesity effect due to the inhibition of adipocyte differentiation and adipogenesis.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Fazliana Mansor ◽  
Harvest F. Gu ◽  
Claes-Göran Östenson ◽  
Louise Mannerås-Holm ◽  
Elisabet Stener-Victorin ◽  
...  

Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects ofLabisia pumila(LP) standardized water extract on PPARgamma transcriptional activity in adipocytesin vitroandin vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50 mg/kg/day of LP) and PCOS-control (1 mL of deionised water) for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100 μg/mL LP and compared to untreated control and 10 μM of rosiglitazone (in type of thiazolidinediones). LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway.


Sign in / Sign up

Export Citation Format

Share Document