scholarly journals Diazoxide-induced β-cell rest reduces endoplasmic reticulum stress in lipotoxic β-cells

2008 ◽  
Vol 199 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Ernest Sargsyan ◽  
Henrik Ortsäter ◽  
Kristofer Thorn ◽  
Peter Bergsten

Elevated levels of glucose and lipids are characteristics of individuals with type 2 diabetes mellitus (T2DM). The enhanced nutrient levels have been connected with deterioration of β-cell function and impaired insulin secretion observed in these individuals. A strategy to improve β-cell function in individuals with T2DM has been intermittent administration of KATP channel openers. After such treatment, both the magnitude and kinetics of insulin secretion are markedly improved. In an attempt to further delineate mechanisms of how openers of KATP channels improve β-cell function, the effects of diazoxide on markers of endoplasmic reticulum (ER) stress was determined in β-cells exposed to the fatty acid palmitate. The eukaryotic translation factor 2-alpha kinase 3 (EIF2AK3; also known as PERK) and endoplasmic reticulum to nucleus signaling 1 (ERN1; also known as IRE1) pathways, but not the activating transcription factor (ATF6) pathway of the unfolded protein response, are activated in such lipotoxic β-cells. Inclusion of diazoxide during culture attenuated activation of the EIF2AK3 pathway but not the ERN1 pathway. This attenuation was associated with reduced levels of DNA-damage inducible transcript 3 (DDIT3; also known as CHOP) and β-cell apoptosis was decreased. It is concluded that reduction of ER stress may be a mechanism by which diazoxide improves β-cell function.

2021 ◽  
Author(s):  
Bo Zhu ◽  
Yumei Chen ◽  
Fang Xu ◽  
Xiaolu Shen ◽  
Xuanyu Chen ◽  
...  

Background: Androgens excess results in endoplasmic reticulum (ER) stress, which is an important cause of β cells dysfunction. Here, we investigated the molecular regulation of androgens excess, ER stress, and β-cell function in polycystic ovary syndrome (PCOS). Methods: PCOS mouse model was established by injection of dehydroepiandrosterone (DHEA). Primary cultured mouse islets were used to detect testosterone (TE)-induced ER stress. The response of ER stress, apoptosis, and hyperinsulinemia were analyzed in INS-1 cells with or without TE exposure. Androgen receptor (AR) antagonist and ER stress inhibitor treatment was performed to evaluate the role of TE in ER stress and proinsulin secretion of PCOS mice. Results: PCOS mice had higher ER stress in islets. TE exposure induced ER stress and apoptosis significantly through sustaining insulin overexpression in β cells, which in turn impaired proinsulin maturation and secretion. Blocking this process could significantly relieve ER stress and apoptosis and improve insulin homeostasis. Conclusion: ER stress activated by androgens excess in PCOS contributes to β cell dysfunction and hyperinsulinemia.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3328
Author(s):  
Eloisa Aparecida Vilas-Boas ◽  
Davidson Correa Almeida ◽  
Leticia Prates Roma ◽  
Fernanda Ortis ◽  
Angelo Rafael Carpinelli

A high caloric intake, rich in saturated fats, greatly contributes to the development of obesity, which is the leading risk factor for type 2 diabetes (T2D). A persistent caloric surplus increases plasma levels of fatty acids (FAs), especially saturated ones, which were shown to negatively impact pancreatic β-cell function and survival in a process called lipotoxicity. Lipotoxicity in β-cells activates different stress pathways, culminating in β-cells dysfunction and death. Among all stresses, endoplasmic reticulum (ER) stress and oxidative stress have been shown to be strongly correlated. One main source of oxidative stress in pancreatic β-cells appears to be the reactive oxygen species producer NADPH oxidase (NOX) enzyme, which has a role in the glucose-stimulated insulin secretion and in the β-cell demise during both T1 and T2D. In this review, we focus on the acute and chronic effects of FAs and the lipotoxicity-induced β-cell failure during T2D development, with special emphasis on the oxidative stress induced by NOX, the ER stress, and the crosstalk between NOX and ER stress.


2016 ◽  
Vol 57 (1) ◽  
pp. R1-R17 ◽  
Author(s):  
Kira Meyerovich ◽  
Fernanda Ortis ◽  
Florent Allagnat ◽  
Alessandra K Cardozo

Insulin-secreting pancreatic β-cells are extremely dependent on their endoplasmic reticulum (ER) to cope with the oscillatory requirement of secreted insulin to maintain normoglycemia. Insulin translation and folding rely greatly on the unfolded protein response (UPR), an array of three main signaling pathways designed to maintain ER homeostasis and limit ER stress. However, prolonged or excessive UPR activation triggers alternative molecular pathways that can lead to β-cell dysfunction and apoptosis. An increasing number of studies suggest a role of these pro-apoptotic UPR pathways in the downfall of β-cells observed in diabetic patients. Particularly, the past few years highlighted a cross talk between the UPR and inflammation in the context of both type 1 (T1D) and type 2 diabetes (T2D). In this article, we describe the recent advances in research regarding the interplay between ER stress, the UPR, and inflammation in the context of β-cell apoptosis leading to diabetes.


2014 ◽  
Vol 223 (2) ◽  
pp. 107-117 ◽  
Author(s):  
Michael Rouse ◽  
Antoine Younès ◽  
Josephine M Egan

Resveratrol (RES) and curcumin (CUR) are polyphenols that are found in fruits and turmeric, and possess medicinal properties that are beneficial in various diseases, such as heart disease, cancer, and type 2 diabetes mellitus (T2DM). Results from recent studies have indicated that their therapeutic properties can be attributed to their anti-inflammatory effects. Owing to reports stating that they protect against β-cell dysfunction, we studied their mechanism(s) of action in β-cells. In T2DM, cAMP plays a critical role in glucose- and incretin-stimulated insulin secretion as well as overall pancreatic β-cell health. A potential therapeutic target in the management of T2DM lies in regulating the activity of phosphodiesterases (PDEs), which degrade cAMP. Both RES and CUR have been reported to act as PDE inhibitors in various cell types, but it remains unknown if they do so in pancreatic β-cells. In our current study, we found that both RES (0.1–10 μmol/l) and CUR (1–100 pmol/l)-regulated insulin secretion under glucose-stimulated conditions. Additionally, treating β-cell lines and human islets with these polyphenols led to increased intracellular cAMP levels in a manner similar to 3-isobutyl-1-methylxanthine, a classic PDE inhibitor. When we investigated the effects of RES and CUR on PDEs, we found that treatment significantly downregulated the mRNA expression of most of the 11 PDE isozymes, including PDE3B, PDE8A, and PDE10A, which have been linked previously to regulation of insulin secretion in islets. Furthermore, RES and CUR inhibited PDE activity in a dose-dependent manner in β-cell lines and human islets. Collectively, we demonstrate a novel role for natural-occurring polyphenols as PDE inhibitors that enhance pancreatic β-cell function.


2021 ◽  
Author(s):  
Jinghe Li ◽  
Ryota Inoue ◽  
Yu Togashi ◽  
Tomoko Okuyama ◽  
Aoi Satoh ◽  
...  

The effects of imeglimin, a novel anti-diabetes agent, on β-cell function remain unclear. Here, we unveiled the impact of imeglimin on β-cell survival. Treatment with imeglimin augmented mitochondrial function, enhanced insulin secretion, promoted β-cell proliferation, and improved β-cell survival in mouse islets. Imeglimin upregulated the expression of endoplasmic reticulum (ER)-related molecules including <i>Chop (Ddit3),</i> <i>Gadd34</i> (<i>Ppp1r15a</i>), <i>Atf3</i>, and <i>Sdf2l1</i>, and decreased eIF2α phosphorylation, after treatment with thapsigargin, and restored global protein synthesis in β-cells under ER stress. Imeglimin failed to protect ER stress-induced β-cell apoptosis in CHOP-deficient islets or in the presence of GADD34 inhibitor. Treatment with imeglimin showed a significant decrease in the number of apoptotic β-cells and increased β-cell mass in Akita mice. Imeglimin also protected against β-cell apoptosis in both human islets and human pluripotent stem cell (<a>hPSC)-derived β-like cells</a>. <a>Taken together, imeglimin modulates ER homeostasis pathway, which results in the prevention of β-cell apoptosis both <i>in vitro</i> and <i>in vivo</i>.</a>


2021 ◽  
Author(s):  
Chien-Wen Chen ◽  
Bo-Jhih Guan ◽  
Mohammed R Alzahrani ◽  
Zhaofeng Gao ◽  
Long Gao ◽  
...  

Pancreatic β-cells undergo high levels of endoplasmic reticulum (ER) stress due to their role in insulin secretion. Hence, they require sustainable and efficient adaptive stress responses to cope with the stress. Whether duration and episodes of chronic ER stress directly compromises β-cell identity is largely unknown. We show that under reversible, chronic ER stress, β-cells undergo a distinct transcriptional and translational reprogramming. During reprogramming, expression of master regulators of β-cell function and identity and proinsulin processing is impaired. Upon recovery from stress, β-cells regain their identity, highlighting a high-degree of adaptive β-cell plasticity. Remarkably, when stress episodes exceed a certain threshold, β-cell identity is gradually lost. Single cell RNA-seq analysis of islets from type 1 diabetes (T1D) patients, identifies the severe deregulation of the chronic stress-adaptation program, and reveals novel biomarkers for progression of T1D. Our results suggest β-cell adaptive exhaustion (βEAR) is a significant component of the pathogenesis of T1D.


2020 ◽  
Author(s):  
Taiyi Kuo ◽  
Wen Du ◽  
Yasutaka Miyachi ◽  
Prasanna K. Dadi ◽  
David A. Jacobson ◽  
...  

AbstractGenetic and acquired abnormalities contribute to pancreatic β-cell failure in diabetes. Transcription factors Hnf4α (MODY1) and FoxO1 are respective examples of these two components, and are known to act through β-cell-specific enhancers. However, their relationship is unclear. Here we show by genome-wide interrogation of chromatin modifications that FoxO1 ablation in mature β-cells leads to increased selection of FoxO1 enhancers by Hnf4α. To model the functional significance we generated single and compound knockouts of FoxO1 and Hnf4α in β-cells. Single knockout of either gene impaired insulin secretion in mechanistically distinct fashions. Surprisingly, the defective β-cell secretory function of either single mutant in hyperglycemic clamps and isolated islets treated with various secretagogues, was completely reversed in double mutants. Gene expression analyses revealed the reversal of β-cell dysfunction with an antagonistic network regulating glycolysis, including β-cell “disallowed” genes; and that a synergistic network regulating protocadherins emerged as likely mediators of the functional restoration of insulin secretion. The findings provide evidence of antagonistic epistasis as a model of gene/environment interactions in the pathogenesis of β-cell dysfunction.


2019 ◽  
Vol 240 (3) ◽  
pp. R97-R105 ◽  
Author(s):  
Weiwei Xu ◽  
Jamie Morford ◽  
Franck Mauvais-Jarvis

One of the most sexually dimorphic aspects of metabolic regulation is the bidirectional modulation of glucose homeostasis by testosterone in male and females. Severe testosterone deficiency predisposes men to type 2 diabetes (T2D), while in contrast, androgen excess predisposes women to hyperglycemia. The role of androgen deficiency and excess in promoting visceral obesity and insulin resistance in men and women respectively is well established. However, although it is established that hyperglycemia requires β cell dysfunction to develop, the role of testosterone in β cell function is less understood. This review discusses recent evidence that the androgen receptor (AR) is present in male and female β cells. In males, testosterone action on AR in β cells enhances glucose-stimulated insulin secretion by potentiating the insulinotropic action of glucagon-like peptide-1. In females, excess testosterone action via AR in β cells promotes insulin hypersecretion leading to oxidative injury, which in turn predisposes to T2D.


2021 ◽  
Author(s):  
Ping Gu ◽  
Yuege Lin ◽  
Qi Wan ◽  
Dongming Su ◽  
Qun Shu

Background: Increased insulin production and secretion by pancreatic β-cells are important for ensuring the high insulin demand during gestation. However, the underlying mechanism of β-cell adaptation during gestation or in gestational diabetes mellitus (GDM) remains unclear. Oxytocin is an important physiological hormone in gestation and delivery, and it also contributes to the maintenance of β-cell function. The aim of this study was to investigate the role of oxytocin in β-cell adaptation during pregnancy. Methods: The relationship between the blood oxytocin level and pancreatic β-cell function in patients with GDM and healthy pregnant women was investigated. Gestating and non-gestating mice were used to evaluate the in vivo effect of oxytocin signal on β-cells during pregnancy. In vitro experiments were performed on INS-1 insulinoma cells. Results: The blood oxytocin levels were lower in patients with GDM than in healthy pregnant women and were associated with impaired pancreatic β-cell function. Acute administration of oxytocin increased insulin secretion in both gestating and non-gestating mice. A three-week oxytocin treatment promoted the proliferation of pancreatic β-cells and increased the β-cell mass in gestating but not non-gestating mice. Antagonism of oxytocin receptors by atosiban impaired insulin secretion and induced GDM in gestating but not non-gestating mice. Oxytocin enhanced glucose-stimulated insulin secretion, activated the mitogen-activated protein kinase pathway, and promoted cell proliferation in INS-1 cells. Conclusions: These findings provide strong evidence that oxytocin is needed for β-cell adaptation during pregnancy to maintain β-cell function, and lack of oxytocin could be associated with the risk of GDM.


Author(s):  
Eva Tudurí ◽  
Sergi Soriano ◽  
Lucía Almagro ◽  
Anabel García-Heredia ◽  
Alex Rafacho ◽  
...  

Abstract Aging is associated with a decline in peripheral insulin sensitivity and an increased risk of impaired glucose tolerance and type 2 diabetes. During conditions of reduced insulin sensitivity, pancreatic β-cells undergo adaptive responses to increase insulin secretion and maintain euglycemia. However, the existence and nature of β-cell adaptations and/or alterations during aging are still a matter of debate. In this study, we investigated the effects of aging on β-cell function from control (3-month-old) and aged (20-month-old) mice. Aged animals were further categorized in two groups: high insulin sensitive (aged-HIS) and low insulin sensitive (aged-LIS). Aged-LIS mice were hyperinsulinemic, glucose intolerant and displayed impaired glucose-stimulated insulin and C-peptide secretion, whereas aged-HIS animals showed characteristics in glucose homeostasis similar to controls. In isolated β-cells, we observed that glucose-induced inhibition of KATP channel activity was reduced with aging, particularly in the aged-LIS group. Glucose-induced islet NAD(P)H production was decreased in aged mice, suggesting impaired mitochondrial function. In contrast, voltage-gated Ca 2+ currents were higher in aged-LIS β-cells, and pancreatic islets of both aged groups displayed increased glucose-induced Ca 2+ signaling and augmented insulin secretion compared with controls. Morphological analysis of pancreas sections also revealed augmented β-cell mass with aging, especially in the aged-LIS group, as well as ultrastructural β-cell changes. Altogether, these findings indicate that aged mouse β-cells compensate for the aging-induced alterations in the stimulus-secretion coupling, particularly by adjusting their Ca 2+ influx to ensure insulin secretion. These results also suggest that decreased peripheral insulin sensitivity exacerbates the effects of aging on β-cells.


Sign in / Sign up

Export Citation Format

Share Document