Diazoxide-induced β-cell rest reduces endoplasmic reticulum stress in lipotoxic β-cells
Elevated levels of glucose and lipids are characteristics of individuals with type 2 diabetes mellitus (T2DM). The enhanced nutrient levels have been connected with deterioration of β-cell function and impaired insulin secretion observed in these individuals. A strategy to improve β-cell function in individuals with T2DM has been intermittent administration of KATP channel openers. After such treatment, both the magnitude and kinetics of insulin secretion are markedly improved. In an attempt to further delineate mechanisms of how openers of KATP channels improve β-cell function, the effects of diazoxide on markers of endoplasmic reticulum (ER) stress was determined in β-cells exposed to the fatty acid palmitate. The eukaryotic translation factor 2-alpha kinase 3 (EIF2AK3; also known as PERK) and endoplasmic reticulum to nucleus signaling 1 (ERN1; also known as IRE1) pathways, but not the activating transcription factor (ATF6) pathway of the unfolded protein response, are activated in such lipotoxic β-cells. Inclusion of diazoxide during culture attenuated activation of the EIF2AK3 pathway but not the ERN1 pathway. This attenuation was associated with reduced levels of DNA-damage inducible transcript 3 (DDIT3; also known as CHOP) and β-cell apoptosis was decreased. It is concluded that reduction of ER stress may be a mechanism by which diazoxide improves β-cell function.