scholarly journals High sensitivity of β-cell replication to the inhibitory effects of interleukin-1β: modulation by adenoviral overexpression of IGF2 in rat islets

2009 ◽  
Vol 203 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Elisabet Estil.les ◽  
Noèlia Téllez ◽  
Joan Soler ◽  
Eduard Montanya

Interleukin-1β (IL1B) is an important contributor to the autoimmune destruction of β-cells in type 1 diabetes, and it has been recently related to the development of type 2 diabetes. IGF2 stimulates β-cell proliferation and survival. We have determined the effect of IL1B on β-cell replication, and the potential modulation by IGF2 and glucose. Control-uninfected and adenovirus encoding for IGF2 (Ad-IGF2)-infected rat islets were cultured at 5.5 or 22.2 mmol/l glucose with or without 1, 10, 30, and 50 U/ml of IL1B. β-Cell replication was markedly reduced by 10 U/ml of IL1B and was almost nullified with 30 or 50 U/ml of IL1B. Higher concentrations of IL1B were required to increase β-cell apoptosis. Although IGF2 overexpression had a strong mitogenic effect on β-cells, IGF2 could preserve β-cell proliferation only in islets cultured with 10 U/ml IL1B, and had no effect with 30 and 50 U/ml of IL1B. In contrast, IGF2 overexpression induced a clear protection against IL1B-induced apoptosis, and higher concentrations of the cytokine were needed to increase β-cell apoptosis in Ad-IGF2-infected islets. These results indicate that β-cell replication is highly sensitive to the deleterious effects of the IL1B as shown by the inhibition of replication by relatively low IL1B concentrations, and the almost complete suppression of β-cell replication with high IL1B concentrations. Likewise, the inhibitory effects of IL-β on β-cell replication were not modified by glucose, and were only modestly prevented by IGF2 overexpression, in contrast with the higher protection against IL1B-induced apoptosis afforded by glucose and by IGF2 overexpression.

2012 ◽  
Vol 303 (1) ◽  
pp. E132-E143 ◽  
Author(s):  
Fang Zhao ◽  
Fengjie Huang ◽  
Mengxiong Tang ◽  
Xiaoming Li ◽  
Nina Zhang ◽  
...  

We demonstrated previously that the activation of ALK7 (activin receptor-like kinase-7), a member of the type I receptor serine/threonine kinases of the TGF-β superfamily, resulted in increased apoptosis and reduced proliferation through suppression of Akt signaling and the activation of Smad2-dependent signaling pathway in pancreatic β-cells. Here, we show that Nodal activates ALK7 signaling and regulates β-cell apoptosis. We detected Nodal expression in the clonal β-cell lines and rodent islet β-cells. Induction of β-cell apoptosis by treatment with high glucose, palmitate, or cytokines significantly increased Nodal expression in clonal INS-1 β-cells and isolated rat islets. The stimuli induced upregulation of Nodal expression levels were associated with elevation of ALK7 protein and enhanced phosphorylated Smad3 protein. Nodal treatment or overexpression of Nodal dose- or time-dependently increased active caspase-3 levels in INS-1 cells. Nodal-induced apoptosis was associated with decreased Akt phosphorylation and reduced expression level of X-linked inhibitor of apoptosis (XIAP). Remarkably, overexpression of XIAP or constitutively active Akt, or ablation of Smad2/3 activity partially blocked Nodal-induced apoptosis. Furthermore, siRNA-mediated ALK7 knockdown significantly attenuated Nodal-induced apoptosis of INS-1 cells. We suggest that Nodal-induced apoptosis in β-cells is mediated through ALK7 signaling involving the activation of Smad2/3-caspase-3 and the suppression of Akt and XIAP pathways and that Nodal may exert its biological effects on the modulation of β-cell survival and β-cell mass in an autocrine fashion.


2002 ◽  
Vol 277 (51) ◽  
pp. 49676-49684 ◽  
Author(s):  
Christian E. Wrede ◽  
Lorna M. Dickson ◽  
Melissa K. Lingohr ◽  
Isabelle Briaud ◽  
Christopher J. Rhodes

Free fatty acids (FFA) have been reported to reduce pancreatic β-cell mitogenesis and to increase apoptosis. Here we show that the FFA, oleic acid, increased apoptosis 16-fold in the pancreatic β-cell line, INS-1, over a 18-h period as assessed by Hoechst 33342/propidium iodide staining and caspase-3 and -9 activation, with negligible necrosis. A parallel analysis of the phosphorylation activation of protein kinase B (PKB) showed this was reduced in the presence of FFA that correlated with the incidence of apoptosis. At stimulatory 15 mmglucose and/or in the added presence of insulin-like growth factor 1, FFA-induced β-cell apoptosis was lessened compared with that at a basal 5 mmglucose. However, most strikingly, adenoviral mediated expression of a constitutively active PKB, but not a “kinase-dead” PKB variant, essentially prevented FFA-induced β-cell apoptosis under all glucose/insulin-like growth factor 1 conditions. Further analysis of pro-apoptotic downstream targets of PKB, implicated a role for PKB-mediated phosphorylation inhibition of glycogen synthase kinase-3α/β and the forkhead transcription factor, FoxO1, in protection of FFA-induced β-cell apoptosis. In addition, down-regulation of the pro-apoptotic tumor suppresser protein, p53, via PKB-mediated phosphorylation of MDM2 might also play a role in partially protecting β-cells from FFA-induced apoptosis. Adenoviral mediated expression of wild type p53 potentiated FFA-induced β-cell apoptosis, whereas expression of a dominant negative p53 partly inhibited β-cell apoptosis by ∼50%. Hence, these data demonstrate that PKB activation plays an important role in promoting pancreatic β-cell survival in part via inhibition of the pro-apoptotic proteins glycogen synthase kinase-3α/β, FoxO1, and p53. This, in turn, provides novel insight into the mechanisms involved in FFA-induced β-cell apoptosis.


2016 ◽  
Vol 36 (15) ◽  
pp. 2067-2077 ◽  
Author(s):  
Bryndon J. Oleson ◽  
Katarzyna A. Broniowska ◽  
Aaron Naatz ◽  
Neil Hogg ◽  
Vera L. Tarakanova ◽  
...  

Nitric oxide, produced in pancreatic β cells in response to proinflammatory cytokines, plays a dual role in the regulation of β-cell fate. While nitric oxide induces cellular damage and impairs β-cell function, it also promotes β-cell survival through activation of protective pathways that promote β-cell recovery. In this study, we identify a novel mechanism in which nitric oxide prevents β-cell apoptosis by attenuating the DNA damage response (DDR). Nitric oxide suppresses activation of the DDR (as measured by γH2AX formation and the phosphorylation of KAP1 and p53) in response to multiple genotoxic agents, including camptothecin, H2O2, and nitric oxide itself, despite the presence of DNA damage. While camptothecin and H2O2both induce DDR activation, nitric oxide suppresses only camptothecin-induced apoptosis and not H2O2-induced necrosis. The ability of nitric oxide to suppress the DDR appears to be selective for pancreatic β cells, as nitric oxide fails to inhibit DDR signaling in macrophages, hepatocytes, and fibroblasts, three additional cell types examined. While originally described as the damaging agent responsible for cytokine-induced β-cell death, these studies identify a novel role for nitric oxide as a protective molecule that promotes β-cell survival by suppressing DDR signaling and attenuating DNA damage-induced apoptosis.


Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4521-4530 ◽  
Author(s):  
Sabine Rütti ◽  
Jan A. Ehses ◽  
Rahel A. Sibler ◽  
Richard Prazak ◽  
Lucia Rohrer ◽  
...  

Abstract A low high-density lipoprotein (HDL) plasma concentration and the abundance of small dense low-density lipoproteins (LDL) are risk factors for developing type 2 diabetes. We therefore investigated whether HDL and LDL play a role in the regulation of pancreatic islet cell apoptosis, proliferation, and secretory function. Isolated mouse and human islets were exposed to plasma lipoproteins of healthy human donors. In murine and human β-cells, LDL decreased both proliferation and maximal glucose-stimulated insulin secretion. The comparative analysis of β-cells from wild-type and LDL receptor-deficient mice revealed that the inhibitory effect of LDL on insulin secretion but not proliferation requires the LDL receptor. HDL was found to modulate the survival of both human and murine islets by decreasing basal as well as IL-1β and glucose-induced apoptosis. IL-1β-induced β-cell apoptosis was also inhibited in the presence of either the delipidated protein or the deproteinated lipid moieties of HDL, apolipoprotein A1 (the main protein component of HDL), or sphingosine-1-phosphate (a bioactive sphingolipid mostly carried by HDL). In murine β-cells, the protective effect of HDL against IL-1β-induced apoptosis was also observed in the absence of the HDL receptor scavenger receptor class B type 1. Our data show that both LDL and HDL affect function or survival of β-cells and raise the question whether dyslipidemia contributes to β-cell failure and hence the manifestation and progression of type 2 diabetes mellitus.


Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2538-2546 ◽  
Author(s):  
Gonzalo Pérez-Arana ◽  
Manuel Blandino-Rosano ◽  
Arturo Prada-Oliveira ◽  
Manuel Aguilar-Diosdado ◽  
Carmen Segundo

In autoimmune type 1 diabetes mellitus, proinflammatory cytokine-mediated apoptosis of β-cells has been considered to be the first event directly responsible for β-cell mass reduction. In the Bio-Breeding (BB) rat, an in vivo model used in the study of autoimmune diabetes, β-cell apoptosis is observed from 9 wk of age and takes place after an insulitis period that begins at an earlier age. Previous studies by our group have shown an antiproliferative effect of proinflammatory cytokines on cultured β-cells in Wistar rats, an effect that was partially reversed by Exendin-4, an analogue of glucagon-like peptide-1. In the current study, the changes in β-cell apoptosis and proliferation during insulitis stage were also determined in pancreatic tissue sections in normal and thymectomized BB rats, as well as in Wistar rats of 5, 7, 9, and 11 wk of age. Although stable β-cell proliferation in Wistar and thymectomized BB rats was observed along the course of the study, a decrease in β-cell proliferation and β-cell mass from the age of 5 wk, and prior to the commencement of apoptosis, was noted in BB rats. Exendin-4, in combination with anti-interferon-γ antibody, induced a near-total recovery of β-cell proliferation during the initial stages of insulitis. This highlights the importance of early intervention and, as well, the possibilities of new therapeutic approaches in preventing autoimmune diabetes by acting, initially, in the insulitis stage and, subsequently, on β-cell regeneration and on β-cell apoptosis.


2011 ◽  
Vol 25 (10) ◽  
pp. 1760-1772 ◽  
Author(s):  
Esra Karslioglu ◽  
Jeffrey W. Kleinberger ◽  
Fatimah G. Salim ◽  
Amy E. Cox ◽  
Karen K. Takane ◽  
...  

Adult human β-cells replicate slowly. Also, despite the abundance of rodent β-cell lines, there are no human β-cell lines for diabetes research or therapy. Prior studies in four commonly studied rodent β-cell lines revealed that all four lines displayed an unusual, but strongly reproducible, cell cycle signature: an increase in seven G1/S molecules, i.e. cyclins A, D3, and E, and cdk1, -2, -4, and -6. Here, we explore the upstream mechanism(s) that drive these cell cycle changes. Using biochemical, pharmacological and molecular approaches, we surveyed potential upstream mitogenic signaling pathways in Ins 1 and RIN cells. We used both underexpression and overexpression to assess effects on rat and human β-cell proliferation, survival and cell cycle control. Our results indicate that cMyc is: 1) uniquely up-regulated among other candidates; 2) principally responsible for the increase in the seven G1/S molecules; and, 3) largely responsible for proliferation in rat β-cell lines. Importantly, cMyc expression in β-cell lines, although some 5- to 7-fold higher than normal rat β-cells, is far below the levels (75- to 150-fold) previously associated with β-cell death and dedifferentiation. Notably, modest overexpression of cMyc is able to drive proliferation without cell death in normal rat and human β-cells. We conclude that cMyc is an important driver of replication in the two most commonly employed rat β-cell lines. These studies reverse the current paradigm in which cMyc overexpression is inevitably associated with β-cell death and dedifferentiation. The cMyc pathway provides potential approaches, targets, and tools for driving and sustaining human β-cell replication.


2011 ◽  
Vol 438 (1) ◽  
pp. 177-189 ◽  
Author(s):  
Julien Véret ◽  
Nicolas Coant ◽  
Evgeny V. Berdyshev ◽  
Anastasia Skobeleva ◽  
Nicole Therville ◽  
...  

Pancreatic β-cell apoptosis induced by palmitate requires high glucose concentrations. Ceramides have been suggested to be important mediators of glucolipotoxicity-induced β-cell apoptosis. In INS-1 β-cells, 0.4 mM palmitate with 5 mM glucose increased the levels of dihydrosphingosine and dihydroceramides, two lipid intermediates in the de novo biosynthesis of ceramides, without inducing apoptosis. Increasing glucose concentrations to 30 mM amplified palmitate-induced accumulation of dihydrosphingosine and the formation of (dihydro)ceramides. Of note, glucolipotoxicity specifically induced the formation of C18:0, C22:0 and C24:1 (dihydro)ceramide molecular species, which was associated with the up-regulation of CerS4 (ceramide synthase 4) levels. Fumonisin-B1, a ceramide synthase inhibitor, partially blocked apoptosis induced by glucolipotoxicity. In contrast, apoptosis was potentiated in the presence of D,L-threo-1-phenyl-2-palmitoylamino-3-morpholinopropan-1-ol, an inhibitor of glucosylceramide synthase. Moreover, overexpression of CerS4 amplified ceramide production and apoptosis induced by palmitate with 30 mM glucose, whereas down-regulation of CerS4 by siRNA (short interfering RNA) reduced apoptosis. CerS4 also potentiates ceramide accumulation and apoptosis induced by another saturated fatty acid: stearate. Collectively, our results suggest that glucolipotoxicity induces β-cell apoptosis through a dual mechanism involving de novo ceramide biosynthesis and the formation of ceramides with specific N-acyl chain lengths rather than an overall increase in ceramide content.


2012 ◽  
Vol 216 (2) ◽  
pp. 231-243 ◽  
Author(s):  
Xiuli Men ◽  
Liang Peng ◽  
Haiyan Wang ◽  
Wenjian Zhang ◽  
Shiqing Xu ◽  
...  

The calcium-regulated transcription coactivator, Ca2+-responsive transactivator (CREST) was expressed in pancreatic β-cells. Moreover, CREST expression became significantly increased in pancreatic islets isolated from hyperglycemic Goto–Kakizaki rats compared with normoglycemic Wistar controls. In addition, culture of β-cells in the presence of high glucose concentrations also increased CREST expression in vitro. To further investigate the role of this transactivator in the regulation of β-cell function, we established a stable β-cell line with inducible CREST expression. Hence, CREST overexpression mimicked the glucotoxic effects on insulin secretion and cell growth in β-cells. Moreover, high glucose-induced apoptosis was aggravated by upregulation of the transactivator but inhibited when CREST expression was partially silenced by siRNA technology. Further investigation found that upregulation of Bax and downregulation of Bcl2 was indeed induced by its expression, especially under high glucose conditions. In addition, as two causing factors leading to β-cell apoptosis under diabetic conditions, endoplasmic reticulum stress and high free fatty acid, mimicked the high glucose effects on CREST upregulation and generation of apoptosis in β-cells, and these effects were specifically offset by the siRNA knockdown of CREST. These results indicated that CREST is implicated in β-cell apoptosis induced by culture in high glucose and hence that CREST may become a potential pharmacological target for the prevention and treatment of type 2 diabetes mellitus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brenda Strutt ◽  
Sandra Szlapinski ◽  
Thineesha Gnaneswaran ◽  
Sarah Donegan ◽  
Jessica Hill ◽  
...  

AbstractThe apelin receptor (Aplnr) and its ligands, Apelin and Apela, contribute to metabolic control. The insulin resistance associated with pregnancy is accommodated by an expansion of pancreatic β-cell mass (BCM) and increased insulin secretion, involving the proliferation of insulin-expressing, glucose transporter 2-low (Ins+Glut2LO) progenitor cells. We examined changes in the apelinergic system during normal mouse pregnancy and in pregnancies complicated by glucose intolerance with reduced BCM. Expression of Aplnr, Apelin and Apela was quantified in Ins+Glut2LO cells isolated from mouse pancreata and found to be significantly higher than in mature β-cells by DNA microarray and qPCR. Apelin was localized to most β-cells by immunohistochemistry although Aplnr was predominantly associated with Ins+Glut2LO cells. Aplnr-staining cells increased three- to four-fold during pregnancy being maximal at gestational days (GD) 9–12 but were significantly reduced in glucose intolerant mice. Apelin-13 increased β-cell proliferation in isolated mouse islets and INS1E cells, but not glucose-stimulated insulin secretion. Glucose intolerant pregnant mice had significantly elevated serum Apelin levels at GD 9 associated with an increased presence of placental IL-6. Placental expression of the apelinergic axis remained unaltered, however. Results show that the apelinergic system is highly expressed in pancreatic β-cell progenitors and may contribute to β-cell proliferation in pregnancy.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dror Sever ◽  
Anat Hershko-Moshe ◽  
Rohit Srivastava ◽  
Roy Eldor ◽  
Daniel Hibsher ◽  
...  

AbstractNF-κB is a well-characterized transcription factor, widely known for its roles in inflammation and immune responses, as well as in control of cell division and apoptosis. However, its function in β-cells is still being debated, as it appears to depend on the timing and kinetics of its activation. To elucidate the temporal role of NF-κB in vivo, we have generated two transgenic mouse models, the ToIβ and NOD/ToIβ mice, in which NF-κB activation is specifically and conditionally inhibited in β-cells. In this study, we present a novel function of the canonical NF-κB pathway during murine islet β-cell development. Interestingly, inhibiting the NF-κB pathway in β-cells during embryogenesis, but not after birth, in both ToIβ and NOD/ToIβ mice, increased β-cell turnover, ultimately resulting in a reduced β-cell mass. On the NOD background, this was associated with a marked increase in insulitis and diabetes incidence. While a robust nuclear immunoreactivity of the NF-κB p65-subunit was found in neonatal β-cells, significant activation was not detected in β-cells of either adult NOD/ToIβ mice or in the pancreata of recently diagnosed adult T1D patients. Moreover, in NOD/ToIβ mice, inhibiting NF-κB post-weaning had no effect on the development of diabetes or β-cell dysfunction. In conclusion, our data point to NF-κB as an important component of the physiological regulatory circuit that controls the balance of β-cell proliferation and apoptosis in the early developmental stages of insulin-producing cells, thus modulating β-cell mass and the development of diabetes in the mouse model of T1D.


Sign in / Sign up

Export Citation Format

Share Document