scholarly journals Progressive development of insulin resistance phenotype in male mice with complete aromatase (CYP19) deficiency

2003 ◽  
Vol 176 (2) ◽  
pp. 237-246 ◽  
Author(s):  
K Takeda ◽  
K Toda ◽  
T Saibara ◽  
M Nakagawa ◽  
K Saika ◽  
...  

Aromatase (CYP19) is a cytochrome P450 enzyme that catalyzes the formation of aromatic C18 estrogens from C19 androgens. It is expressed in various tissues and contributes to sex-specific differences in cellular metabolism. We have generated aromatase-knockout (ArKO) mice in order to study the role of estrogen in the regulation of glucose metabolism. The mean body weights of male ArKO (-/-) mice (n=7) and wild-type littermates (+/+) (n=7) at 10 and 12 weeks of age were 26.7+/-1.9 g vs 26.1+/-0.8 g and 28.8+/-1.4 g vs 26.9+/-1.0 g respectively. The body weights of the ArKO and wild-type mice diverged between 10 and 12 weeks of age with the ArKO males weighing significantly more than their wild-type littermates (P<0.05). The ArKO males showed significantly higher blood glucose levels during an intraperitoneal glucose tolerance test compared with wild-type littermates beginning at 18 weeks of age. By 24 weeks of age, they had higher fasting blood glucose levels compared with wild-type littermates (133.8+/-22.8 mg/dl vs 87.8+/-20.3 mg/dl respectively; P<0.01). An intraperitoneal injection of insulin (0.75 mU insulin/g) caused a continuous decline in blood glucose levels in wild-type mice whereas ArKO males at 18 weeks and older exhibited a rebound increase in glucose levels 30 min after insulin injection. Thus, ArKO male mice appear to develop glucose intolerance and insulin resistance in an age-dependent manner. There was no difference in fasting serum triglyceride and total cholesterol levels between ArKO male mice and wild-type littermates at 13 and 25 weeks of age. However, serum triglyceride and cholesterol levels were significantly elevated following a meal in ArKO mice at 36 weeks of age. Serum testosterone levels in ArKO male mice were continuously higher compared with wild-type littermates. Treatment of ArKO males with 17beta-estradiol improved the glucose response as measured by intraperitoneal glucose and insulin tolerance tests. Treatment with fibrates and thiazolidinediones also led to an improvement in insulin resistance and reduced androgen levels. As complete aromatase deficiency in man is associated with insulin resistance, obesity and hyperlipidemia, the ArKO mouse may be a useful animal model for examining the role of estrogens in the control of glucose and lipid homeostasis.

2018 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Verawaty Verawaty ◽  
Dhea Claudia Novel

<p>Penelitian ini bertujuan untuk melihat pengaruh pemberian ekstrak etanol kulit petai (Parkia speciosa Hassk) terhadap penurunan kadar glukosa darah mencit jantan yang diinduksi aloksan. Hewan percobaan dibagi atas 5 kelompok diantaranya kelompok kontrol negatif, kelompok kontrol positif,dosis I (280 mg/kgBB mencit), dosis II (560 mg/kg BB mencit), dosis III (840 mg/kg BB mencit). Penelitian dilakukan selama 21 hari. Persentase penurunan kadar glukosa darah mencit jantan setelah diberikan ekstrak etanol kulit petai pada hari ke-21 adalah dosis I (77,52 %) lebih besar dibandingkan dengan dosis II (69,5 %) dan dosis III (73,37 %). Data yang diperoleh dianalisis dengan uji Two Way Anova dengan program SPSS 17. Hasil penelitian ini menunjukkan bahwa pemberian ekstrak etanol kulit petai untuk tiga variasi dosis menyatakan perbedaan yang bermakna secara statistik terhadap penurunan kadar glukosa darah mencit jantan.</p><p><em>Petai (Parkia speciosa Hassk) has a compound β-sitosterol and stigmasterol that have efficacy to decreased blood glucose levels. This study aimed to determine the effect of ethanol extract of petai peel for decrease blood glucose levels of male mice induced by alloxan. Experimental animals were divided into 5 groups including negative control group, positive control group, the first dose (280 mg/kg in mice), the second dose (560 mg/kg in mice), the third dose (840 mg/kg in mice). The study was conducted for 21 days. After 21 days, the result found that the percentage of blood glucose levels after the male mice given the ethanol extract of petai peel was, the first dose (77.52%) biger than the second dose (69.5%) and the third dose (73.37%). The data obtained were analyzed by Two Way ANOVA using SPSS 17. The results showed that have signicantly difference between three dose variation of ethanol extract of petai peel in blood glucose levels.</em></p>


2017 ◽  
Vol 36 (4) ◽  
pp. 433
Author(s):  
Nurhidajah Nurhidajah ◽  
Nurrahman Nurrahman

The process of germination of grains such as rice, could increase some nutritional values of  amino acids and dietary fiber. Red rice and its sprouts are believed to be able to decrease blood glucose in patients with diabetes mellitus (DM). The aim of this study was to evaluate the hypoglycemic effect of red rice sprouts in STZ-NA induced diabetic rats on blood glucose level, insulin level, and HOMA-IR and HOMA-β index. This experimental study was conducted based on randomized post test only control group design using 24 male Wistar rats aged 2.5 months. Rats were divided into 4 groups, one group without induction of STZ-NA fed with a standard diet (control) and three groups of STZ- NA induced with a standard diet, red rice and red rice germ. Experiments were conducted for 6 weeks. The results showed that sprouted red rice lowered blood glucose levels by 61.88 % and the value of HOMA-IR (insulin resistance parameters) by 56.82%. Insulin level increased by 16.35 % and HOMA-β by 763.6 %. This study showed that red rice germ was able to decrease blood glucose levels and increase insulin resistance of DM rats and the strength of the pancreatic beta cells. ABSTRAKProses perkecambahan biji-bijian seperti beras, dapat meningkatkan beberapa nilai gizi seperti asam amino dan serat pangan. Beras merah dan kecambahnya diyakini mampu menurunkan glukosa darah pada penderita diabetes melitus (DM). Tujuan penelitian ini adalah mengevaluasi efek hipoglikemik kecambah beras merah pada tikus diabetes yang diinduksi STZ-NA terhadap kadar glukosa darah, insulin, serta indeks HOMA-IR dan HOMA β. Penelitian ini bersifat eksperimental in vivo pada hewan coba tikus Wistar jantan usia 2,5 bulan sebanyak 24 ekor dengan desain penelitian randomized post test only control group. Tikus dibagi menjadi 4 kelompok, masing-masing 1 kelompok tanpa induksi STZ-NA dengan diet standar dan 3 kelompok diinduksi STZ-NA dengan diet standar, beras merah dan kecambah beras merah. Percobaan dilakukan selama 6 minggu. Hasil penelitian menunjukkan kecambah beras merah mampu menurunkan kadar glukosa darah sebesar 61,88 % dan nilai HOMA-IR (parameter resistensi insulin) 56,82 %. Kadar insulin meningkat 16,35 % dan HOMA β 763,6 %. Disimpulkan, kecambah beras merah mampu menurunkan kadar glukosa darah dan memperbaiki kondisi resistensi insulin tikus DM, dan kekuatan sel beta pankreas.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Ida Arjani

Bacground The level of glucose in the blood must be kept in a sufficient concentration to provide nutrition for body organs. But on the contrary, the concentration of glucose that is too high can have a negative impact as osmotic diuresis and cellsdehydration. Therefore, blood glucose should be maintained in a constant concentration. Objective The purpose of this study is to describe the levels of blood glucose and cholesterol in traders at Sangeh tourist attraction, Abiansema, District of Badung. Methods This study is a descriptive study. Population of this research was all traders at Sangeh Tourist attraction or about 132 traders. 50 sample was selected by random sampling. Results showed blood glucose levels at any of the 50 samples, 84% normal and 16% higher. Blood glucose levels> 140 mg / dL by age group most in the age range 55 years and over is 12%, the blood glucose levels 140 mg / dL by gender be obtained at most in the female sex is as much as 10%. Test results cholesterol levels of 50 samples of 24% normal and 76% high cholesterol levels> 200 mg / dL based on age in range 55 years and over 36% whereas cholesterol levels 200 mg / dL highs also in the female sex is as much as 60%. Keywords : Blood glucose, cholesterol, traders


1980 ◽  
Vol 3 (5) ◽  
pp. 299-304 ◽  
Author(s):  
S.D. Bruck

The control of blood glucose levels in diabetes involving devices are critically reviewed, and the role of blood-contacting biomaterial components analyzed. These include mechanical insulin-delivery systems of the closed-loop type that require an electronic glucose sensor and feedback, and open-loop systems that deliver insulin without a sensor and feedback. Whole pancreatic and islet transplantations, islet encapsulation, and the potential role of polymeric sustained drug delivery systems are discussed. The medical and social impacts of diabetes mellitus are of prime public health concern and of even greater magnitude than those of heart disease in the United States. While future advances in device design, miniaturization, and biometrials technology will significantly add to the arsenal of therapeutic alternatives, devices capable of controlling blood glucose levels ought to be viewed as mere interim phases rather than as final goals of the problem.


1982 ◽  
Vol 243 (3) ◽  
pp. R450-R453
Author(s):  
W. Langhans ◽  
N. Geary ◽  
E. Scharrer

The effects of feeding on liver glycogen content and blood glucose in the hepatic and hepatic portal veins were investigated in rats. Liver glycogen content decreased about 25% during meals both in rats refed after 12 h food deprivation (23 +/- 1 to 17 +/- 1 mg glycogen/g liver) and in ad libitum-fed rats taking fully spontaneous meals (44 +/- 2 to 32 +/- 2 mg/g). Liver glycogen began to increase within 30 min after meals in ad libitum-fed rats. Hepatic vein blood glucose levels at meal onset (118 +/- 4 mg/dl in the food-deprived rats, 127 +/- 4 in ad libitum-fed rats) and at meal end (155 +/- 3 and 166 +/- 5 mg/dl, respectively) were similar in the two groups. Portal vein blood glucose increased during meals in the previously food-deprived rats (83 +/- 4 to 116 +/- 6 mg/dl) but not in the ad libitum-fed rats (127 +/- 5 to 132 +/- 3 mg/dl). Mechanisms that may elicit prandial glycogenolysis and the possible role of this effect in the production of meal ending satiety are discussed.


1990 ◽  
Vol 258 (1) ◽  
pp. E212-E219 ◽  
Author(s):  
X. F. Zhou ◽  
K. H. Jhamandas ◽  
B. G. Livett

We have studied the glucose response and catecholamine (CA) response to insulin in the conscious rat to evaluate the role of sensory fibers in these responses in animals pretreated with capsaicin as neonates. In contrast to previous results obtained in anesthetized rats (Z. Khalil, B.G. Livett, and P.D. Marley. J. Physiol. Lond. 370: 201-215, 1986; Z. Khalil, B.G. Livett, and P.D. Marley. J. Physiol. Lond. 391: 511-526, 1987.), in conscious rats, insulin (1 IU/kg iv) produced only a mild hypoglycemia, which quickly returned to resting levels and caused no significant changes in plasma epinephrine levels. Somatostatin and SMS-(201-995), a somatostatin analogue, both potentiated and prolonged the insulin-induced hypoglycemia, resulting in an increase in circulating CA levels that was suppressed by hexamethonium and atropine. In capsaicin-pretreated rats the blood glucose levels at 90 min after insulin were significantly lower than those in vehicle-pretreated rats both in the presence (1 IU/kg insulin, 48 +/- 6 vs. 92 +/- 6 mg/100 ml, P less than 0.01) and absence (10 IU/kg insulin, 38 +/- 4 vs. 51 +/- 2 mg/100 ml, P less than 0.01) of SMS-(201-995). The CA levels in capsaicin-pretreated rats at 90 min after insulin were higher than in vehicle-pretreated rats (epinephrine levels: 27 +/- 4 vs. 10 +/- 1 pmol/ml in 1 IU/kg insulin, P less than 0.01; 64 +/- 14 vs. 25 +/- 5 pmol/ml in 10 IU/kg insulin, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


PPAR Research ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Annelies Peeters ◽  
Myriam Baes

Tight control of storage and synthesis of glucose during nutritional transitions is essential to maintain blood glucose levels, a process in which the liver has a central role. PPAR is the master regulator of lipid metabolism during fasting, but evidence is emerging for a role of PPAR in balancing glucose homeostasis as well. By using PPAR ligands and PPAR mice, several crucial genes were shown to be regulated by PPAR in a direct or indirect way. We here review recent evidence that PPAR contributes to the adaptation of hepatic carbohydrate metabolism during the fed-to-fasted or fasted-to-fed transition in rodents.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Ansarullah ◽  
Bhavna Bharucha ◽  
Malati Umarani ◽  
Mitesh Dwivedi ◽  
Naresh C. Laddha ◽  
...  

Agents which can either trigger proliferation ofβ-cells or induce neogenesis ofβ-cells from precursors would be of pivotal role in reversing diabetic manifestations. We examined the role of flavonoid rich fraction (FRF) ofOreocnide integrifolialeaves using a mice model of experimental regeneration. BALB/c mice were subjected to ~70% pancreatectomy (Px) and supplemented with FRF for 7, 14, and 21 days after pancreatectomy. Px animals displayed increased blood glucose levels and decreased insulin titres which were ameliorated by FRF supplementation. FRF-treated mice demonstrated prominent newly formed islets budding off from ducts and depicting increased BrdU incorporation. Additionally, transcripts levels of Ins1/2, Reg-3α/γ, Ngn-3, and Pdx-1 were upregulated during the initial 1 week. The present study provides evidence of a nutraceutical contributing to islet neogenesis from ductal cells as the mode ofβ-cell regeneration and a potential therapeutic for clinical trials in management of diabetic manifestations.


Sign in / Sign up

Export Citation Format

Share Document