scholarly journals Adaptive Realized Hyperbolic GARCH Process: Stability and Estimation

2021 ◽  
Vol 16 (1) ◽  
pp. 2629-2645
Author(s):  
Elhadji Sall ◽  
El Hadji Dème ◽  
Abdou Kâ Diongue
Author(s):  
Luis Ramiro Miramontes-Martínez ◽  
Pasiano Rivas-García ◽  
Alonso Albalate-Ramírez ◽  
José Enrique Botello-Álvarez ◽  
Carlos Escamilla-Alvarado ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 634
Author(s):  
Agnieszka Kisielewicz ◽  
Karthikeyan Thalavai Pandian ◽  
Daniel Sthen ◽  
Petter Hagqvist ◽  
Maria Asuncion Valiente Bermejo ◽  
...  

This study investigates the influence of resistive pre-heating of the feedstock wire (here called hot-wire) on the stability of laser-directed energy deposition of Duplex stainless steel. Data acquired online during depositions as well as metallographic investigations revealed the process characteristic and its stability window. The online data, such as electrical signals in the pre-heating circuit and images captured from side-view of the process interaction zone gave insight on the metal transfer between the molten wire and the melt pool. The results show that the characteristics of the process, like laser-wire and wire-melt pool interaction, vary depending on the level of the wire pre-heating. In addition, application of two independent energy sources, laser beam and electrical power, allows fine-tuning of the heat input and increases penetration depth, with little influence on the height and width of the beads. This allows for better process stability as well as elimination of lack of fusion defects. Electrical signals measured in the hot-wire circuit indicate the process stability such that the resistive pre-heating can be used for in-process monitoring. The conclusion is that the resistive pre-heating gives additional means for controlling the stability and the heat input of the laser-directed energy deposition.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1249
Author(s):  
Maofu Zhang ◽  
Yanfei Han ◽  
Chuanbao Jia ◽  
Shengfa Dong ◽  
Sergii Maksimov ◽  
...  

In underwater wet welding, the unstable welding process caused by the generation and rupture of bubbles and the chilling effect of water on the welding area result in low quality of welded joints, which makes it difficult to meet the practical application of marine engineering. To improve the process stability and joining quality, a mixture of welding flux with a water glass or epoxy resin was placed on the welding zone before underwater welding. In this paper, welds’ appearance, geometry statistics of welds’ formation, welding process stability, slag structure, microstructure, pores and mechanical properties were investigated. It was found that with the addition of water glass in the mixture, the penetration of weld was effectively increased, and the frequency of arc extinction was reduced. Though the porosity rose to a relatively high level, the joints’ comprehensive mechanical properties were not significantly improved. Notably, the applied epoxy resin completely isolated the surrounding water from the welding area, which greatly improved process stability. Furthermore, it benefited from the microstructure filled with massive acicular ferrite, the average elongation and room temperature impact toughness increased by 178.4%, and 69.1% compared with underwater wet welding, respectively, and the bending angle of the joint reaches to 180°.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 677
Author(s):  
Muhammad Tahir Khan ◽  
Johannes Krümpel ◽  
Dominik Wüst ◽  
Andreas Lemmer

Production of bio-based materials in biorefineries is coupled with the generation of organic-rich process-wastewater that requires further management. Anaerobic technologies can be employed as a tool for the rectification of such hazardous by-products. Therefore, 5-hydroxymethylfurfural process-wastewater and its components were investigated for their biodegradability in a continuous anaerobic process. The test components included 5-hydroxymethylfurfural, furfural, levulinic acid, and the full process-wastewater. Each component was injected individually into a continuously operating anaerobic filter at a concentration of 0.5 gCOD. On the basis of large discrepancies within the replicates for each component, we classified their degradation into the categories of “delayed”, “retarded”, and “inhibitory”. Inhibitory represented the replicates for all the test components that hampered the process. For the retarded degradation, their mean methane yield per 0.5 gCOD was between 21.31 ± 13.04 mL and 28.98 ± 25.38 mL. Delayed digestion was considered adequate for further assessments in which the order of conversion to methane according to specific methane yield for each component from highest to lowest was as follows: levulinic acid > furfural > 5-hydroxymethylfurfural > process-wastewater. Disparities and inconsistencies in the degradation of process-wastewater and its components can compromise process stability as a whole. Hence, the provision of energy with such feedstock is questionable.


1999 ◽  
Vol 26 (1-4) ◽  
pp. 9-19 ◽  
Author(s):  
K. Suu ◽  
N. Tani ◽  
F. Chu ◽  
G. Hickert ◽  
T. D. Hadnagy ◽  
...  

2006 ◽  
Vol 6 (1) ◽  
pp. 57-62 ◽  
Author(s):  
C. P. Bhatta ◽  
A. Matsuda ◽  
K. Kawasaki ◽  
D. Omori

Sign in / Sign up

Export Citation Format

Share Document