scholarly journals STRESSES IN ANVILS OF VARIOUS CONSTRUCTION OF CONTINUOUS CASTING AND DEFORMATION PLANT AT PRODUCTION OF SHEETS FROM STEEL FOR WELDED PIPES

2019 ◽  
Vol 62 (4) ◽  
pp. 270-275
Author(s):  
O. S. Lekhov ◽  
A. V. Mikhalev ◽  
M. M. Shevelev

A comparative assessment of strenuous state of the anvils with and without channels has been carried out for the installation of combined continuous casting and deformation process in the production of steel sheets for welded pipes. The conditions of operation and loading of the anvils of combined continuous casting and deformation process are described. The design of anvil with channels for water cooling and the nature of its loading are given. Using the algorithm for solving problems in the elasticity theory by finite element method, the laws governing the distribution of axial stresses in anvils from the slab reduction force are determined. Effect of the channels for anvils cooling with water on the magnitude and nature of stresses distribution in them from the stress of the slab reduction was estimated. The calculation results of temperature fields and axial and equivalent thermoelastic stresses in anvils with channels are presented for the production process of steel sheets for welded pipes in a combined continuous casting and deformation unit. The article considers regularities of total stresses distribution in anvils with channels. To assess the effect of anvils structure on their stress state, regularities of distribution of thermoelastic and total stresses in strands without channels have been determined. The graph of dependence of thermoelastic stresses in the anvil on temperature of its contact surface is given. Recommendations for choosing the material of the fighters are given. The advantages and disadvantages of the anvils with channels for the unit for combined continuous casting and deformation are described. The parameters of such a pilot installation are presented. The authors also describe the results of an experimental study of the parameters of a combined process at the manufacture installation for continuous casting and deformation of JSC Ural Pipe Plant.

2020 ◽  
Vol 63 (2) ◽  
pp. 140-145
Author(s):  
O. S. Lekhov ◽  
A. V. Mikhalev ◽  
M. M. Shevelev

The article presents the initial data for calculation of stress-strain state of a three-layer bimetallic strip. The regularities of distribution of axial and tangent stresses in the zone of cyclic deformation are considered. The main loads acting on the mold strikers are described for the unit of combined continuous casting and deformation at production of steel three-layer bimetallic strips. The authors describe the method for determining total stresses in the installation strikers from the efforts of compression and temperature loads. Also temperature boundary conditions for determining the temperature fields are considered. The procedure for determining temperature fields and thermoelastic stresses in the strikers is shown using the ANSYS package. The calculation results of temperature fields and thermoelastic stresses were made in five sections of the striker and are given for characteristic lines. The nature of temperature distribution over the thickness of the striker is shown when it is cooled with water at idling and in contact with a bimetallic ingot during its compression. For the calculated temperature fields, the authors have determined the axial and equivalent stresses occurring in the strikers without channels when the ingot is compressed and cooled with water during idling. The magnitudes and patterns of distribution of total axial stresses from the compression and thermal loads are also given along the thickness of the contact layer, along the height and thickness of the strikers.


Author(s):  
O.S. Lekhov ◽  
D.Kh. Bilalov

The prospects for development of combined continuous casting and deformation processes in production of sheets from nonferrous metals and alloys are considered. Technological possibilities of combined continuous casting and deformation process installation for production of cooper sheets are described. Problem of simultaneous determination of stress-strain state of metal in cyclic deformation zone and stresses in anvils on reduction force in the production on installation of cooper sheets is given. The calculation results are obtained by solving the problems of elastic-plasticity and elastic by fi nite element method using the ANSYS package. The regularities for the distribution of axial and tangential stresses in the cyclic deformation zone in the production on instal lation of cooper sheets are presented. Design scheme and loading pattern of anvil in the production on installation of cooper sheets is described. The values and regularities of axial stresses distribution in anvils of installation depending on reduction force are presented.


2018 ◽  
Vol 61 (6) ◽  
pp. 431-438
Author(s):  
O. S. Lekhov ◽  
A. V. Mikhalev ◽  
M. M. Shevelev

The main loads acting on the backup-walls of the assembled  mold of the combined continuous casting and deformation unit in production of steel sheets for welded pipes are described. The technique  for determining the total stresses in backup-walls of the installation of  the compression forces and the temperature load is given. The temperature boundary conditions for determining the temperature fields in  the backup-walls of the assembled mold of the unit for steel sheets for  welded pipes production are depicted. The dependence for determining the heat flux density of the deformation center hot metal influencing working surface of the backup-wall during workpiece drafting is  considered, as well as the technique for determining values   of effective  heat transfer coefficients for backup-walls cooling by water. The procedure for determining temperature fields and thermoelastic stresses  on backup-walls of the installation is described using the ANSYS  package. The article considers the initial data for determining temperature fields and thermoelastic stresses in backup-walls of the assembled  casting mold of the installation. The results of temperature fields and  thermoelastic stresses calculation are achieved in five sections of the  backup-wall and are provided for the typical lines. The nature of temperature distribution along the backup-wall thickness during cooling  by water at idle and at contact with the workpiece during its compression is shown. For the calculated temperature fields, axial and equivalent stresses, that arise in the backup-walls without channels when the  workpiece is drafted and cooled with water at idle, are determined. The  values   and regularities of distribution of axial and equivalent stresses  along the thickness of the contact layer and along the height and thickness of the backup-walls during drafting of the workpiece and at idle  are presented. The values   and regularities of the distribution of total  axial stresses along the thickness of the contact layer, the height and  thickness of the backup-walls from the drafting forces and the temperature load are given.


2021 ◽  
Vol 63 (11-12) ◽  
pp. 960-964
Author(s):  
O. S. Lekhov ◽  
A. V. Mikhalev

The article describes the main loads affecting shaped backups of the unit of combined process of continuous casting and deformation in billets production. Importance of determining the temperature fields and thermoelastic stresses in shaped backups with collars is provided at formation of several billets, at slab compression and at idle during water cooling of backups. The authors describe strength and thermophysical properties of steel from which the backups are made. Geometry of backups with collars used for obtaining billets of three different shapes in one pass is shown. Initial data of the temperature field calculation are given for backups with collars of the combined unit. Temperature boundary conditions are considered for calculation of temperature fields of backups with collars. Boundary conditions determining temperature of such backups are described and values of the heat flow and effective heat transfer coefficient are given. The results of calculation of temperature fields are performed in four sections and are given for typical lines and points located on contact surface of backups with collars and in contact layer at depth of 5 mm from the working surface. The sizes of finite elements grid which is used at calculation of temperature field of backups with collars are provided. Temperature field of backups with collars is determined on the basis of solution of unsteady thermal conductivity equation corresponding initial and boundary conditions. Values and regularities of temperature distribution in bases and in tops of the middle and extreme edges of the shaped backups are presented during slab compression and at idle when obtaining billets of three shapes in one pass at the unit of combined continuous casting and deformation.


2021 ◽  
Vol 64 (2) ◽  
pp. 143-148
Author(s):  
O. S. Lekhov ◽  
A. V. Mikhalev

The problem statement and boundary conditions for calculation of axial thermoelastic stresses in backups with collars of the unit of combined continuous casting and deformation are provided for production of three steel billets. The scheme of calculations for determination of thermoelastic stresses in backups with collars in known temperature field was stated using ANSYS software. The results of calculation of thermoelastic stresses in shaped dies were performed in four sections of a backup with collars. In each section, calculation results are given for four typical lines and seven points. Values of axial thermoelastic stresses for seven typical points of each section are given for the contact surface of a backup with collars and the contact layer at a depth of 5 mm from the contact surface. The stress state of a shaped backup in the middle of depression between the middle collars was determined and the regularities of distribution of axial and equivalent stresses over the thickness, length and width of a backup were established during slab compression and at idle. The results of calculation of thermoelastic stresses in the top of the middle collar of a shaped backup on the contact surface and in the contact layer during slab compression and at idle are presented. Graphs of thermoelastic stresses distribution along the line passing through the top of a collar are given, which show the zones of compressive and tensile thermoelastic stresses during slab compression and at idle. The character of the stress state in the base of extreme collar was determined for production of three steel billets in the unit of combined process of continuous casting and deformation.


2021 ◽  
Vol 70 (1) ◽  
pp. 15-30
Author(s):  
Mateusz Zieliński ◽  
Piotr Koniorczyk ◽  
Janusz Zmywaczyk ◽  
Marek Preiskorn

Abstract. The paper presents numerical simulations of transient heat conduction in the uncooled nozzle of a short-range anti-aircraft rocket engine. The calculations were made for the configuration of the nozzle with an insert in the critical section made of various materials. The inserts used were: POCO graphite, Al2O3 ceramics, ZrO2-3Y2O3 ceramics. For comparison, numerical simulations of the heat transfer in a nozzle made entirely of St 45 steel, the melting point of which is 1700K, were also carried out. The engine's working time was in the order of 3 s. Numerical simulations were performed using the COMSOL program. The calculation results are given in the form of temperature dependence and heat flux density as a function of time in the critical cross-section. Keywords: non-cooled nozzle, rocket engine, temperature field


Author(s):  
Xiaoting Lu ◽  
Yang Li ◽  
Zailiang Chen

Objective: Ironless, permanent magnet, synchronous linear (IPMSL) motors are applied widely in precision servo control for the nonexistence of cogging forces and comparatively small fluctuations in thrust and speed. Method: The air and water cooling structures are designed by assuming the heat loss in the motor operations is the source for the distribution of the temperature field in the analysis under natural cooling. Conclusion: The temperature fields of the linear motor under the two cooling modes are compared and analyzed, which helps monitor the temperature of linear motors during development and operations.


2021 ◽  
Vol 118 (2) ◽  
pp. 218
Author(s):  
Zhuang Li ◽  
Lintao Zhang ◽  
Danzhu Ma ◽  
Nicholas P. Lavery ◽  
Engang Wang

Electromagnetic brake (EMBr) technique is adopted to reduce the turbulence of molten alloy in the slab mould in the continuous casting process, especially under high casting speed. We introduce a state-of-the-art EMBr technique by reviewing the published literature. The main objective of this paper is to give a clear view of the EMBr technique in terms of the magnet arrangement, along with their “Braking” effect to help decision-making. The EMBr system can be divided into three types, in terms of the magnet arrangement: the Local type, the Ruler type and the Multi-mode type, respectively. Both advantages and disadvantages of each type have been discussed. Further challenges are also raised.


2015 ◽  
Vol 639 ◽  
pp. 71-76
Author(s):  
Mohsen Loh-Mousavi ◽  
Mehrdad Rostami ◽  
Mahmoud Farzin

In recent years, laser forming of round plates into bowl or dome shapes by use of circular, radial and circular-radial patterns have been investigated. Usually formed circular plates using circular or linear patterns are distorted as asymmetric saddle shapes. In this study, a new flower pattern has been proposed to form round plates by laser. To make this pattern, the laser beam scans several petal paths on a circular blank. Laser forming of round plates by the proposed pattern have been studied by three dimensional finite element method. The results have been compared for the flower pattern and other conventional circular and radial pattern. In addition experiments have been conducted to verify the numerical results. The results show that the deformed parts by the petal path are more symmetrical in comparison with circular and radial patterns. It was found that in laser forming of dome-shaped parts, scanning by petal paths prevent distortion and increase the geometrical symmetry of deformed parts by laser. It was shown that laser radiation on petal paths improves the deformation process of laser forming of circular steel sheets.


Sign in / Sign up

Export Citation Format

Share Document