Study into the feasibility of obtaining dense materials based on AlN-SiC solid solution in one stage by SHS gasostatiс processing

Author(s):  
T. G. Akopdzhanyan ◽  
E. A. Chemagina ◽  
I. P. Borovinskaya

The synthesis and sintering of the (AlN)x(SiC)1–x solid solution were studied under the conditions of SHS gasostatiс processing at high nitrogen gas pressures (up to 110 MPa). Phase formation during the combustion of aluminum and silicon carbide mixtures with the different amount of a combustible component (aluminum content is 35 to 60 wt.%) was studied. It was shown that the optimal amount of aluminum mixed with silicon carbide to obtain a single-phase solid solution (with the complete Al conversion to AlN and without SiC dissociation) is 45–50 wt.%. A mixture with 55–60 wt.% Al leads to excessively high temperatures, which in turn leads to the silicon carbide decomposition to Si + C elements. The optimal parameters for obtaining a dense material in one stage were determined. The measured porosity and density of materials obtained demonstrated that preforming is essential for the final density of samples containing 50 wt.% Al: maximum density was achieved at a preforming pressure of 10 MPa. It was found that the 5 wt.% yttrium oxide additive increases the material density by almost 10 %. A similar effect is also obtained by increasing the initial gas pressure from 80 to 110 MPa. The maximum density in this case reached 2.7 g/cm3, i.e. 83 % of the theoretical density. The total volumetric shrinkage of the material was 10 ± 0.5 %, and this indicator can be almost completely smoothed over by the 3 wt.% boron additive. The microhardness of samples was 2000 kg/mm2.

Author(s):  
Vinay Kumar Soni ◽  
S Sanyal ◽  
K Raja Rao ◽  
Sudip K Sinha

The formation of single phase solid solution in High Entropy Alloys (HEAs) is essential for the properties of the alloys therefore, numerous approach were proposed by many researchers to predict the stability of single phase solid solution in High Entropy Alloy. The present review examines some of the recent developments while using computational intelligence techniques such as parametric approach, CALPHAD, Machine Learning etc. for prediction of various phase formation in multicomponent high entropy alloys. A detail study of this data-driven approaches pertaining to the understanding of structural and phase formation behaviour of a new class of compositionally complex alloys is done in the present investigation. The advantages and drawbacks of the various computational are also discussed. Finally, this review aims at understanding several computational modeling tools complying the thermodynamic criteria for phase formation of novel HEAs which could possibly deliver superior mechanical properties keeping an aim at advanced engineering applications.


2018 ◽  
Vol 941 ◽  
pp. 1137-1142
Author(s):  
Elena Colombini ◽  
Andrea Garzoni ◽  
Roberto Giovanardi ◽  
Paolo Veronesi ◽  
Angelo Casagrande

The equimolar Cr, Mn, Fe, Co and Ni alloy, first produced in 2004, was unexpectedly found to be single-phase. Consequently, a new concept of materials was developed: high entropy alloys (HEA) forming a single solid-solution with a near equiatomic composition of the constituting elements. In this study, an equimolar CoCrFeMnNi HEA was modified by the addition of 5 at% of either Al, Cu or Zr. The cold-rolled alloys were annealed for 30 minutes at high temperature to investigate the recrystallization kinetics. The evolution of the grain boundary and the grain size were investigated, from the as-cast to the recrystallized state. Results show that the recrystallized single phase FCC structures exhibits different twin grains density, grain size and recrystallization temperatures as a function of the at.% of modifier alloying elements added. In comparison to the equimolar CoCrFeMnNi, the addition of modifier elements increases significantly the recrystallization temperature after cold deformation. The sluggish diffusion (typical of HEA alloys), the presence of a solute in solid solution as well as the low twin boundary energy are responsible for the lower driving force for recrystallization.


2006 ◽  
Vol 932 ◽  
Author(s):  
Neil C. Hyatt ◽  
Martin C. Stennett ◽  
Steven G. Fiddy ◽  
Jayne S. Wellings ◽  
Sian S. Dutton ◽  
...  

ABSTRACTA range of transition metal bearing hollandite phases, formulated Ba1.2B1.2Ti6.8O16 (B2+ = Mg, Co, Ni, Zn, Mn) and Ba1.2B2.4Ti5.6O16 (B3+ = Al, Cr, Fe) were prepared using an alkoxide - nitrate route. X-ray powder diffraction demonstrated the synthesis of single phase materials for all compositions except B = Mn. The processing conditions required to produce > 95 % dense ceramics were determined for all compositions, except B = Mg for which the maximum density obtained was > 93 %. Analysis of transition metal K-edge XANES data confirmed the presence of the targeted transition metal oxidation state for all compositions except B = Mn, where the overall oxidation state was found to be Mn3+. The K-edge EXAFS data of Ba1.2B1.2Ti6.8O16 (B = Ni and Co) were successfully analysed using a crystallographic model of the hollandite structure, with six oxygen atoms present in the first co-ordination shell at a distance of ca. 2.02Å. Analysis of Fe K-edge EXAFS data of Ba1.2B2.4Ti5.4O16 revealed a reduced co-ordination shell of five oxygens at ca. 1.99Å.


Author(s):  
I. P. Borovinskaya ◽  
T. G. Akopdzhanyan ◽  
E. A. Chemagina ◽  
N. V. Sachkova

Sign in / Sign up

Export Citation Format

Share Document