scholarly journals Surface activity of salt-tolerant Serratia spp. and crude oil biodegradation in saline soil

2012 ◽  
Vol 58 (No. 9) ◽  
pp. 412-416 ◽  
Author(s):  
T. Wu ◽  
W.J. Xie ◽  
Y.L. Yi ◽  
X.B. Li ◽  
H.J. Yang ◽  
...  

An ideal strain for crude oil degradation in saline soils would be one with high salt-tolerance. A novel bacterial strain, Serratia sp. BF40, was isolated from crude oil contaminated saline soils. Its salt-tolerance, surface activity and ability to degrade crude oil in saline soils were evaluated. It can grow in liquid culture with NaCl concentration less than 6.0%. Its surface activity characterized as an efficient surface tension reduction, was significantly affected by salinity above 2.0%. BF40 inoculation could decrease surface tension of soil solutions and facilitate crude oil removal in soils with 0.22–1.20% salinity, but the efficiency was both significantly lower than its biosurfactant addition. The BF40 strain has a high potential for biodegradation of crude oil contaminated saline soils in view of its high surface activity and salt-tolerance, which is the first report of biosurfactant producing by the genus Serratia for petroleum degrading. We suggest that biosurfactant addition is an efficient strategy. Simultaneously, the growing status of the strain and how to boost its surface activity in saline soils should deserve further studies in order to achieve a continuous biosurfactant supply.

Author(s):  
Ping Guo ◽  
Weiwei Xu ◽  
Shi Tang ◽  
Binxia Cao ◽  
Danna Wei ◽  
...  

One cold-adapted strain, named Planococcus sp. XW-1, was isolated from the Yellow Sea. The strain can produce biosurfactant with petroleum as sole source of carbon at low temperature (4 °C). The biosurfactant was identified as glycolipid-type biosurfactant species by thin-layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). It reduced the surface tension of water to 26.8 mN/m with a critical micelle concentration measurement of 60 mg/L. The produced biosurfactant possesses high surface activity at wide ranges of temperature (−18–105 °C), pH values (2–12), and salt concentrations (1–18%). The biosurfactant exhibited higher surface activity and higher growth rate of cells with hexadecane and diesel as carbon source. The strain Planococcus sp. XW-1 was also effective in degrading crude oil, after 21 days of growth at 4 °C in medium with 1% crude oil and 1% (v/v) bacteria broth, 54% of crude oil was degraded. The results suggest that Planococcus sp. XW-1 is a promising candidate for use in the bioremediation of petroleum-contaminated seawater in the Yellow Sea during winter. This study reported for the first time that Planococcus isolated from the Yellow Sea can produce biosurfactant using petroleum as the sole carbon source at low temperature (4 °C), showing its ecological role in the remediation of marine petroleum pollution.


2021 ◽  
Author(s):  
Valerya Tatarintseva ◽  
Marina Trufanova ◽  
Svetlana Selyanina ◽  
Olga Yarygina ◽  
Ivan Zubov

<p>Peat is a caustobiolith traditionally used as a renewable source of organic substances, in particular humic substances (HS). They are considered to have high biological activity and therefore are widely used in industry and agriculture.</p><p>Geoclimatic conditions have a significant impact on the peat accumulation process. Accordingly, peat from various regions differs in composition and physicochemical characteristics of the main components. This affects the properties of peat-based products.</p><p>The study of the group chemical composition of high-moor peat from different climatic regions (Western Siberia and the Belomor-Kuloy plateau) was performed according to the certified author’s method. The study revealed that there are both similarities and a number of differences in peat group chemical composition. All samples showed the low ash-content (up to 3.5%) and the content of easily-hydrolyzable components is inversely proportional to the degree of peat decomposition. This is due to their greater bioavailability compared to other organic matter components. Despite the similar values of the bitumen content in the peat samples (3.5-4.2%), the composition and content of HS differ significantly: 26% and 13-15% for the peat samples from the Siberian region and the Belomor-Kuloy plateau respectively. The ratio of humic and fulvic acids in the peat samples are 3.8 and 1.8 that is consistent with differences in the degree of decomposition.</p><p>Humic substances macromolecules are diphilic, so they can show surface activity in solutions. By the Wilhelmy method it was found that for the adsorption of humic substances into the surface layer to an equilibrium state is required 16-20 hours. While the greatest changes (by 65-85%) occur during the first 30-60 minutes. The maximum depression of surface tension was 31.5-35.8 mN/m. This is characteristic of compounds with high molecular weight. The presence of bitumen components, which also have surface activity, in the HS solution, accelerates the achievement of adsorption equilibrium at the air–water interface.</p><p>Based on the measuring of the surface tension the surface activity was determined. The surface activity characterizes the process of the surface layer formation of a surfactant solution at the air–water interface with an infinite dilution. This parameter was calculated depending on HS solution concentration. The surface activity value of HS solutions extracted from Siberian peat is 2 2.1 N/ m*g that is 2 times higher than the HS solutions from the Belomor-Kuloy plateau. Removal of bitumens from the peat leads to an increase of the surface activity of HS solution from Siberian peat at twice it was before, but for Belomor-Kuloy plateau peat it decreases by 10%. The observed differences can be associated with the peculiarities of the composition of the bitumen. This trend has been confirmed by calculation of the critical micelle concentration and the measurement of the hydrodynamic sizes of particles in solutions using the dynamic light-scattering method.</p><p>It was revealed high surface activity of HS solution. So the range of their possible use could be extended (synthetic detergents, emulsifiers, etc.).</p><p>The reported study was funded by RFBR according to the research projects № 20-35-90037, 18-05-60151, and 18-05-70087.</p>


2017 ◽  
Vol 76 (7) ◽  
pp. 1706-1714 ◽  
Author(s):  
Parvin Hasanizadeh ◽  
Hamid Moghimi ◽  
Javad Hamedi

Biosurfactants are biocompatible surface active agents which many microorganisms produce. This study investigated the production of biosurfactants by Mucor circinelloides. The effects of different factors on biosurfactant production, including carbon sources and concentrations, nitrogen sources, and iron (II) concentration, were studied and the optimum condition determined. Finally, the strain's ability to remove the crude oil and its relationship with biosurfactant production was evaluated. The results showed that M. circinelloides could reduce the surface tension of the culture medium to 26.6 mN/m and create a clear zone of 12.9 cm diameter in an oil-spreading test. The maximum surface tension reduction was recorded 3 days after incubation. The optimum condition for biosurfactant production was achieved in the presence of 8% waste frying oil as a carbon source, 2 g/L yeast extract as a nitrogen source, and 0.01 mM FeSO4. M. circinelloides could consume 8% waste frying oil in 5 days of incubation, and 87.6% crude oil in 12 days of incubation. A direct correlation was observed between oil degradation and surface tension reduction in the first 3 days of fungal growth. The results showed that the waste frying oil could be recommended as an inexpensive oily waste substance for biosurfactant production, and M. circinelloides could have the potential to treat waste frying oil. According to the results, the produced crude biosurfactant or fungal strain could be directly used for the mycoremediation of crude oil contamination in oil fields.


1993 ◽  
Vol 1993 (1) ◽  
pp. 503-504
Author(s):  
Asha Juwarkar ◽  
P. Sudhakar Babu ◽  
Kirti Mishra ◽  
Megha Deshpande

ABSTRACT Surfactants are surface active agents which reduce surface tension and interfacial tension between two immiscible phases and help in emulsification. Toxicity, nonbiodegradability, and limited structural types of chemical surfactants have initiated the need for effective substitutes. Biosurfactants, which are synthesized by specific microbial cultures, have surface active properties comparable to chemical surfactants. They are compounds that can help in oil spill cleanup operations without presenting the problems posed by chemical surfactants. Two bacterial cultures were isolated from oil-contaminated soil and were used for biosurfactant production. The biosurfactants produced by the Bacillus licheniformis, BS1, and Pseudomonas aeruginosa, BS2, in mineral media containing glucose as the carbon source belong to the class of lipoprotein and glycolipid, respectively. They were found to reduce the surface and interfacial tension of water and water-hexadecane systems from 72 dynes/cm and 40 dynes/cm to 28 to 30 dynes/cm and 1 to 3 dynes/cm, respectively. These results were comparable with chemical surfactants with respect to surface tension reduction (Slic Gone 34 dynes/cm and Castrol 30 dynes/cm). The low interfacial tension allows the formation of stable emulsion. The two cultures were grown on different substrates, namely, glucose, mannitol, glycerol, hexadecane, oily sludge, and crude oil. Emulsion formation of hexadecane in water was tested with the cell-free broth containing biosurfactant from the respective substrate broths. Emulsions of 56 percent stability to 100 percent stability were obtained from these biosurfactant-containing broths. Both biosurfactants were able to emulsify crude oil. A surfactant's ability to form a stable emulsion is the first step in oil spill cleanup. The emulsified oil can then be acted upon very easily by the microorganisms under study. Therefore, the biosurfactants produced by the microorganisms under study offer a good potential for use in oil spill cleanup.


2021 ◽  
Vol 21 (21) ◽  
pp. 16387-16411
Author(s):  
Nønne L. Prisle

Abstract. This work presents a thermodynamically consistent framework that enables self-contained, predictive Köhler calculations of droplet growth and activation with considerations of surface adsorption, surface tension reduction, and non-ideal water activity for chemically complex and unresolved surface-active aerosol mixtures. The common presence of surface-active species in atmospheric aerosols is now well-established. However, the impacts of different effects driven by surface activity, in particular bulk–surface partitioning and resulting bulk depletion and/or surface tension reduction, on aerosol hygroscopic growth and cloud droplet activation remain to be generally established. Because specific characterization of key properties, including water activity and surface tension, remains exceedingly challenging for finite-sized activating droplets, a self-contained and thermodynamically consistent model framework is needed to resolve the individual effects of surface activity during droplet growth and activation. Previous frameworks have achieved this for simple aerosol mixtures, comprising at most a few well-defined chemical species. However, atmospheric aerosol mixtures and more realistic laboratory systems are typically chemically more complex and not well-defined (unresolved). Therefore, frameworks which require specific knowledge of the concentrations of all chemical species in the mixture and their composition-dependent interactions cannot be applied. For mixtures which are unresolved or where specific interactions between components are unknown, analytical models based on retrofitting can be applied, or the mixture can be represented by a proxy compound or mixture with well-known properties. However, the surface activity effects evaluated by such models cannot be independently verified. The presented model couples Köhler theory with the Gibbs adsorption and Szyszkowski-type surface tension equations. Contrary to previous thermodynamic frameworks, it is formulated on a mass basis to obtain a quantitative description of composition-dependent properties for chemically unresolved mixtures. Application of the model is illustrated by calculating cloud condensation nuclei (CCN) activity of aerosol particles comprising Nordic aquatic fulvic acid (NAFA), a chemically unresolved and strongly surface-active model atmospheric humic-like substance (HULIS), and NaCl, with dry diameters of 30–230 nm and compositions spanning the full range of relative NAFA and NaCl mixing ratios. For comparison with the model presented, several other predictive Köhler frameworks, with simplified treatments of surface-active NAFA, are also applied. Effects of NAFA surface activity are gauged via a suite of properties evaluated for growing and activating droplets. The presented framework predicts a similar influence of surface activity of the chemically complex NAFA on CCN activation as was previously shown for single, strong surfactants. Comparison to experimental CCN data shows that NAFA bulk–surface partitioning is well-represented by Gibbs adsorption thermodynamics. Contrary to several recent studies, no evidence of significantly reduced droplet surface tension at the point of activation was found. Calculations with the presented thermodynamic model show that throughout droplet growth and activation, the finite amounts of NAFA in microscopic and submicron droplets are strongly depleted from the bulk, due to bulk–surface partitioning, because surface areas for a given bulk volume are very large. As a result, both the effective hygroscopicity and ability of NAFA to reduce droplet surface tension are significantly lower in finite-sized activating droplets than in macroscopic aqueous solutions of the same overall composition. The presented framework enables the influence of surface activity on CCN activation for other chemically complex and unresolved aerosol mixtures, including actual atmospheric samples, to be systematically explored. Thermodynamic input parameters can be independently constrained from measurements, instead of being either approximated by a proxy or determined by retrofitting, potentially confounding several mechanisms influenced by surface activity.


2018 ◽  
Author(s):  
Nønne L. Prisle ◽  
Jack J. Lin ◽  
Sara K. Purdue ◽  
Haisheng Lin ◽  
J. Carson Meredith ◽  
...  

Abstract. Pollenkitt is a viscous material that coats grains of pollen and plays important roles in pollen dispersion and plant reproduction. It may also be an important contributor to pollen water uptake and CCN activity. The chemical composition of pollenkitt varies between species, but has been found to comprise complex organic mixtures including oxygenated, lipid, and aliphatic functionalities. The mix of functionalities suggests that pollenkitt may display aqueous surface activity, which could significantly impact pollen interactions with atmospheric water. Here, we study the surface activity of pollenkitt from six different species and its impact on pollenkitt hygroscopicity. We measure cloud activation and concentration dependent surface tension of pollenkitt and its mixtures with ammonium sulfate salt. Experiments are compared to predictions from several thermodynamic models, taking aqueous surface tension reduction and surfactant surface partitioning into account in various ways. We find a clear reduction of surface tension by pollenkitt in aqueous solution and evidence for impact of both surface tension and surface partitioning mechanisms on cloud activation potential and hygroscopicity. In addition, we find indication of significant impact of complex non-ideal solution effects in systematic and consistent size dependency of pollenkitt hygroscopicity.


Author(s):  
V. I. Ryaboy ◽  
S. E. Levkovets ◽  
G. A. Efremova ◽  
O. E. Koval

In order to create a more effective dialkyldithiophosphate collector used in combination with potassium butylxanthate in flotation of silver ores (m. Dukat), the effect of a number of dialkyldithiophosphate collectors was studied depending on their surface-active properties and hydrophobic ability. It is shown that their collective strength, with close hydrophobic ability, increases as their surfaceactive properties increase and reaches a maximum at a surface tension of 42-45.3 mN/m, and then begins to decrease. The reduction of the hydrophobic ability, even with their high surface-active properties, for example, for hydrolyzed samples, significantly reduces the recovery of silver. Taking into account the studied influence of surface activity and the hydrophobic ability of the reagents, a more efficient dialkyldithiophosphate collector has been developed, increasing silver recovery compared with the standard reagent by 1.8-3.4 %, depending on the ore enrichment. Improving the extraction of silver without reducing the selectivity of the process also contributes to the optimal cost ratio of the proposed dialkyldithiophosphate collector and xanthate.


2021 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
Patrycja Wojtoń ◽  
Magdalena Szaniawska ◽  
Lucyna Hołysz ◽  
Reinhard Miller ◽  
Aleksandra Szcześ

Surfactants derived from renewable sources such as plants are an ecological alternative to synthetic surfactants. Aqueous solutions of natural surfactants extracted from soapnuts obtained from two plants, Sapindus mukorossi and Sapindus trifoliatus, were studied. Their properties in terms of surface tension reduction and wettability were examinated. The natural surfactants show the ability to reduce the surface tension and increase the wettability of the hydrophobic polytetrafluoroethylene surface. These nuts can be used repeatedly for washing also in hard water. Crude extracts from Sp. trifoliatus exhibit better surface properties than those from Sp. mukorossi. This makes these soapnuts a good potential source of biosurfactants for household use.


2021 ◽  
Vol 9 (6) ◽  
pp. 1200
Author(s):  
Gareth E. Thomas ◽  
Jan L. Brant ◽  
Pablo Campo ◽  
Dave R. Clark ◽  
Frederic Coulon ◽  
...  

This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 820
Author(s):  
Clara Azzam ◽  
Sudad Al-Taweel ◽  
Ranya Abdel-Aziz ◽  
Karim Rabea ◽  
Alaa Abou-Sreea ◽  
...  

Stevia rebaudiana Bertoni is a little bush, which is cultivated on a large scale in many countries for medicinal purposes and used as a natural sweetener in food products. The present work aims to conduct a protocol for stevia propagation in vitro to produce and introduce Stevia rebaudiana plants as a new sweetener crop to Egyptian agriculture. To efficiently maximize its propagation, it is important to study the influence of stress factors on the growth and development of Stevia rebaudiana grown in vitro. Two stevia varieties were investigated (Sugar High A3 and Spanti) against salt stress. Leaves were used as the source of explants for callus initiation, regeneration, multiplication and rooting. Some stress-related traits, i.e., photosynthetic pigments, proline contents, and enzyme activity for peroxidase (POD), polyphenol oxidase (PPO), and malate dehydrogenase (MDH) were studied. Murashig and Skoog (MS) medium was supplemented with four NaCl concentrations: 500, 1000, 2000, and 3000 mgL−1, while a salt-free medium was used as the control. The data revealed that salinity negatively affected all studied characters: the number of surviving calli, regeneration%, shoot length, the number of multiple shoots, number of leaf plantlets−1, number of root plantlets−1, and root length. The data also revealed that Sugar High A3 is more tolerant than Spanti. The total chlorophyll content decreased gradually with increasing NaCl concentration. However, the opposite was true for proline content. Isozyme’s fractionation exhibited high levels of variability among the two varieties. Various biochemical parameters associated with salt tolerance were detected in POD. Namely, POD4, POD6, POD 9 at an Rf of 0.34, 0.57, and 0.91 in the Sugar High A3 variety under high salt concentration conditions, as well as POD 10 at an Rf of 0.98 in both varieties under high salt concentrations. In addition, the overexpression of POD 5 and POD 10 at Rf 0.52 and 0.83 was found in both varieties at high NaCl concentrations. Biochemical parameters associated with salt tolerance were detected in PPO (PPO1, PPO2 and PPO4 at an Rf of 0.38, 0.42 and 0.62 in the Sugar High A3 variety under high salt concentrations) and MDH (MDH 3 at an Rf of 0.40 in both varieties at high salt concentrations). Therefore, these could be considered as important biochemical markers associated with salt tolerance and could be applied in stevia breeding programs (marker-assisted selection). This investigation recommends stevia variety Sugar High A3 to be cultivated under salt conditions.


Sign in / Sign up

Export Citation Format

Share Document