scholarly journals Chromosomal rearrangements in Arabidopsis mutants revealed by repeated FISH

2008 ◽  
Vol 53 (No. 7) ◽  
pp. 325-328
Author(s):  
P. Mokroš

The stability of plant nuclear genome is a necessary condition for the faithful transmission of genetic information through cell lineages. When DNA damage occurs due to various impairments, cells start a number of repair processes including ligation of broken chromosomes. As a result, dicentric chromosomes can be formed. Dicentrics are easily detectable as anaphase bridges during following mitosis. Using <i>Arabidopsis</i> as a model plant, we developed a sensitive cytogenetic assay to identify specific chromosomal rearrangements. Here we show <i>Arabidopsis</i> <i>tert<sup>&minus;/&minus;</sup></i> and <i>atm<sup>&minus;/&minus;</sup></i> mutants and their chromosome rearrangements and fusions analysed by fluorescence in situ hybridization (FISH). The method is based on successive rounds of FISH with chromosome-specific probes and the comparison of resulting FISH images.

Genome ◽  
2006 ◽  
Vol 49 (8) ◽  
pp. 1036-1042 ◽  
Author(s):  
Petr Mokros ◽  
Jan Vrbsky ◽  
Jiri Siroky

Double stranded chromosomal breaks are repaired by homologous recombination or nonhomologous end joining (NHEJ). When broken chromosome ends are fused together by NHEJ, the resulting dicentric chromosomes can be detected as anaphase bridges during the subsequent mitosis. Telomeres in the absence of functional telomerase shorten, became unprotected, and are eventually recognized by the cell repair system as double stranded breaks. As result, chromosomes of Arabidopsis thaliana plants that are deficient in the gene for telomerase reverse transcriptase (TERT) are prone to chromosome fusions. We use Arabidopsis tert–/– mutants as a model system for analyzing terminal chromosome fusions. Here we report a novel and sensitive cytogenetic assay for the identification and characterization of chromosome-terminal fusion events by employing fluorescence in situ hybridization (FISH) with multiple probes and a repeated hybridization approach. A mixture of chromosome-specific subtelomeric probes is applied successively in 3 FISH reactions to the slides containing mitotic anaphase figures with anaphase bridges. Each figure is registered by a CCD camera after each in situ hybridization procedure. By comparing the signals presented on the bridge in successive images the assessment of the particular chromosome arms involved in fusion is possible. This experimental setup enables unambiguous identification of individual chromosome ends employed in fusion events.Key words: Arabidopsis; BAC probes; AtTERT gene; bicolour FISH; anaphase.


The ultrastructure of the nuclear evelope is described in various cell types with special emphasis on its pore complexes (p.c.). The architecture of the p.c. is defined against the properties of other membranous pore formations. Evidence is presented that the non-membranous p.c. components contain ribonucleoproteins but do not represent the attachment sites of nuclear chromatin. The possible dynamic nature of the p.c. material is discussed in relation to nucleocytoplasmic translocation processes. DNA of the nuclear genome is firmly attached to interporous sections of the inner nuclear membrane. The stability of this attachment is demonstrated, and chemical and conformational characteristics as well as periods and kinetics of replication are given for both isolated membrane DNA and the corresponding chromatin in situ . The membrane-associated chromatin is dominated by a heterochromatinous character; it does not represent a transitory membrane interaction of replicating DNA. It is hypothesized that membraneattachment of specific regions of the chromosomes are a means to their ordered arrangement during interphase and prophase. Structure, lipid, protein and enzyme pattern of the nuclear membranes, as well as the incorporation kinetics, underline the relationship to the endoplasmic reticulum.


2019 ◽  
Author(s):  
Tobias T Schmidt ◽  
Sushma Sharma ◽  
Gloria X Reyes ◽  
Anna Kolodziejczak ◽  
Tina Wagner ◽  
...  

Abstract The accumulation of mutations is frequently associated with alterations in gene function leading to the onset of diseases, including cancer. Aiming to find novel genes that contribute to the stability of the genome, we screened the Saccharomyces cerevisiae deletion collection for increased mutator phenotypes. Among the identified genes, we discovered MET7, which encodes folylpolyglutamate synthetase (FPGS), an enzyme that facilitates several folate-dependent reactions including the synthesis of purines, thymidylate (dTMP) and DNA methylation. Here, we found that Met7-deficient strains show elevated mutation rates, but also increased levels of endogenous DNA damage resulting in gross chromosomal rearrangements (GCRs). Quantification of deoxyribonucleotide (dNTP) pools in cell extracts from met7Δ mutant revealed reductions in dTTP and dGTP that cause a constitutively active DNA damage checkpoint. In addition, we found that the absence of Met7 leads to dUTP accumulation, at levels that allowed its detection in yeast extracts for the first time. Consequently, a high dUTP/dTTP ratio promotes uracil incorporation into DNA, followed by futile repair cycles that compromise both mitochondrial and nuclear DNA integrity. In summary, this work highlights the importance of folate polyglutamylation in the maintenance of nucleotide homeostasis and genome stability.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Lan Ta ◽  
Adrian Zordan ◽  
Bruce Mercer ◽  
Lynda J. Campbell ◽  
Ruth N. MacKinnon

Telomere loss may lead to chromosomal instability via the breakage-fusion-bridge (BFB) cycle which can result in genetic amplification and the formation of ring and dicentric chromosomes. This cycle continues until stable chromosomes are formed. The case of a 72-year-old female with refractory anaemia with excess blasts type 2 illustrates these events. Conventional cytogenetics produced a complex karyotype which included unstable abnormalities of chromosomes 11, 12, and 15. Fluorescence in situ hybridization (FISH) analyses including multicolor-FISH (M-FISH) and multicolor-banding (M-BAND) revealed multiple clonal populations with 5 copies of MLL on either a ring chromosome composed entirely of chromosome 11 material or a derivative chromosome composed of chromosomes 11, 12, and 15. The FISH results also clarified the likely evolution of the karyotypic complexity. The simplest cell line contained a dic(12;15) in addition to copy number aberrations that are typical of MDS or AML. As the disease progressed, a ring 11 was formed. Subsequently, the ring 11 appears to have unwound and inserted itself into the dic(12;15) chromosome followed by an inversion of the derivative chromosome, producing a der(11;15;12). Telomeric loss and BFB cycles appear to have played an important role in the chromosomal rearrangements and clonal evolution demonstrated in the karyotype.


Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


RSC Advances ◽  
2020 ◽  
Vol 10 (66) ◽  
pp. 40588-40596
Author(s):  
Tony Köhler ◽  
Thomas Heida ◽  
Sandra Hoefgen ◽  
Niclas Weigel ◽  
Vito Valiante ◽  
...  

We describe a bottom-up approach towards functional enzymes utilizing microgels as carriers for genetic information that enable cell-free protein synthesis, in situ immobilization, and utilization of functional deGFP-MatB.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2830
Author(s):  
Sili Wang ◽  
Mark P. Panning ◽  
Steven D. Vance ◽  
Wenzhan Song

Locating underground microseismic events is important for monitoring subsurface activity and understanding the planetary subsurface evolution. Due to bandwidth limitations, especially in applications involving planetarily-distributed sensor networks, networks should be designed to perform the localization algorithm in-situ, so that only the source location information needs to be sent out, not the raw data. In this paper, we propose a decentralized Gaussian beam time-reverse imaging (GB-TRI) algorithm that can be incorporated to the distributed sensors to detect and locate underground microseismic events with reduced usage of computational resources and communication bandwidth of the network. After the in-situ distributed computation, the final real-time location result is generated and delivered. We used a real-time simulation platform to test the performance of the system. We also evaluated the stability and accuracy of our proposed GB-TRI localization algorithm using extensive experiments and tests.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1885
Author(s):  
Xinyu Wu ◽  
Feng Yang ◽  
Jian Gan ◽  
Zhangqian Kong ◽  
Yan Wu

The silver particles were grown in situ on the surface of wood by the silver mirror method and modified with stearic acid to acquire a surface with superhydrophobic and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray energy spectroscopy (XPS) were used to analyze the reaction mechanism of the modification process. Scanning electron microscopy (SEM) and contact angle tests were used to characterize the wettability and surface morphology. A coating with a micro rough structure was successfully constructed by the modification of stearic acid, which imparted superhydrophobicity and antibacterial activity to poplar wood. The stability tests were performed to discuss the stability of its hydrophobic performance. The results showed that it has good mechanical properties, acid and alkali resistance, and UV stability. The durability tests demonstrated that the coating has the function of water resistance and fouling resistance and can maintain the stability of its hydrophobic properties under different temperatures of heat treatment.


2021 ◽  
Vol 7 (12) ◽  
pp. eabe7520
Author(s):  
Priyanka Nandakumar ◽  
Chao Tian ◽  
Jared O’Connell ◽  
David Hinds ◽  
Andrew D. Paterson ◽  
...  

The role of the nuclear genome in maintaining the stability of the mitochondrial genome (mtDNA) is incompletely known. mtDNA sequence variants can exist in a state of heteroplasmy, which denotes the coexistence of organellar genomes with different sequences. Heteroplasmic variants that impair mitochondrial capacity cause disease, and the state of heteroplasmy itself is deleterious. However, mitochondrial heteroplasmy may provide an intermediate state in the emergence of novel mitochondrial haplogroups. We used genome-wide genotyping data from 982,072 European ancestry individuals to evaluate variation in mitochondrial heteroplasmy and to identify the regions of the nuclear genome that affect it. Age, sex, and mitochondrial haplogroup were associated with the extent of heteroplasmy. GWAS identified 20 loci for heteroplasmy that exceeded genome-wide significance. This included a region overlapping mitochondrial transcription factor A (TFAM), which has multiple roles in mtDNA packaging, replication, and transcription. These results show that mitochondrial heteroplasmy has a heritable nuclear component.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marc Benjamin Hahn ◽  
Paul M. Dietrich ◽  
Jörg Radnik

AbstractIonizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further.


Sign in / Sign up

Export Citation Format

Share Document