scholarly journals Assessment of epigenetic methylation changes in hop (Humulus lupulus) plants obtained by meristem culture

2020 ◽  
Vol 56 (No. 4) ◽  
pp. 159-164
Author(s):  
Josef Patzak ◽  
Alena Henychová ◽  
Petr Svoboda ◽  
Ivana Malířová

In vitro meristem cultures have been used for the production of hop (Humulus lupulus L.) virus-free rootstocks worldwide, because multipropagation is considered to preserve the genetic stability of the produced plantlet. Nevertheless, in vitro tissue cultures can cause genetic and epigenetic changes. Therefore, we studied the genetic and epigenetic variability of Saaz Osvald’s clones, Sládek and Premiant cultivars on the DNA methylation level by methylation-sensitive amplification polymorphism (MSAP). In vitro propagated plants, acclimatised glasshouse rootstocks as well as derived mericlones and control plants under field conditions were used for the analyses. A total of 346 clearly and highly reproducible amplified products were detected in the MSAP analyses within the studied hop plants. We found 16 polymorphic products (4.6% of products) and 64 products with methylation changes (18.5% of products) in the analyses. The demethylation events were comparable to the de novo methylation events. Most demethylation changes were found in the in vitro plants, but only a few of them were found in the derived mericlones under field conditions. In contrast, the de novo methylation changes persisted in the acclimatised plants under glasshouse or field conditions. A hierarchical cluster analysis was used for the evaluation of the molecular genetic variability within the individual samples. The dendrogram showed that the individual samples of the same variety, more or less, clustered together. Because the methylation status varied during the virus-free rootstock production process, we suppose that de/methylation process is a natural tool of epigenetics and evolution in vegetatively propagated plants.

2020 ◽  
Author(s):  
Sharon Spizzichino ◽  
Dalila Boi ◽  
Giovanna Boumis ◽  
Roberta Lucchi ◽  
Francesca R. Liberati ◽  
...  

ABSTRACTDe novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: thymidylate synthase (TYMS), serine hydroxymethyltransferase (SHMT) and dihydrofolate reductase (DHFR), targets of widely used chemotherapeutics such as antifolates and 5-fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex (dTMP-SC). We report the intracellular dynamics of the complex in lung cancer cells by in situ proximity ligation assay, showing that it is also detected in the cytoplasm. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human TYMS and DHFR. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionary selected in eukaryotes to optimize protein-protein interactions. Lastly, our results on the activity of the complete thymidylate cycle in vitro, provide a useful tool to develop drugs targeting the entire complex instead of the individual components.


1998 ◽  
Vol 18 (9) ◽  
pp. 5166-5177 ◽  
Author(s):  
Judy A. Mikovits ◽  
Howard A. Young ◽  
Paula Vertino ◽  
Jean-Pierre J. Issa ◽  
Paula M. Pitha ◽  
...  

ABSTRACT The immune response to pathogens is regulated by a delicate balance of cytokines. The dysregulation of cytokine gene expression, including interleukin-12, tumor necrosis factor alpha, and gamma interferon (IFN-γ), following human retrovirus infection is well documented. One process by which such gene expression may be modulated is altered DNA methylation. In subsets of T-helper cells, the expression of IFN-γ, a cytokine important to the immune response to viral infection, is regulated in part by DNA methylation such that mRNA expression inversely correlates with the methylation status of the promoter. Of the many possible genes whose methylation status could be affected by viral infection, we examined the IFN-γ gene as a candidate. We show here that acute infection of cells with human immunodeficiency virus type 1 (HIV-1) results in (i) increased DNA methyltransferase expression and activity, (ii) an overall increase in methylation of DNA in infected cells, and (iii) the de novo methylation of a CpG dinucleotide in the IFN-γ gene promoter, resulting in the subsequent downregulation of expression of this cytokine. The introduction of an antisense methyltransferase construct into lymphoid cells resulted in markedly decreased methyltransferase expression, hypomethylation throughout the IFN-γ gene, and increased IFN-γ production, demonstrating a direct link between methyltransferase and IFN-γ gene expression. The ability of increased DNA methyltransferase activity to downregulate the expression of genes like the IFN-γ gene may be one of the mechanisms for dysfunction of T cells in HIV-1-infected individuals.


2012 ◽  
Vol 24 (1) ◽  
pp. 154
Author(s):  
A. T. Grazul-Bilska ◽  
M. L. Johnson ◽  
P. P. Borowicz ◽  
D. A. Redmer ◽  
L. P. Reynolds

Compromised pregnancies can be caused by genetic, epigenetic, environmental and/or other factors. Assisted reproductive technology (ART) may have profound effects on placental and fetal development, leading eventually to compromised pregnancy. DNA methylation, regulated by DNA methyltransferases (Dnmt) and other factors, plays an important role during embryonic, including placental, development. Altered DNA methylation in the trophoblast and, subsequently, the placenta has been reported for compromised pregnancies and may contribute to embryonic/fetal loss. Little is known, however, about DNA methylation processes in placental tissues during early stages of normal or compromised pregnancies in any species. Thus, we hypothesised that ART would affect the expression of 5 methylcytosine (5mC; a marker of global methylation) and mRNA for Dnmt1, 3a and 3b in utero-placental tissues during early pregnancy in sheep. Pregnancies (n = 7 per group) were achieved through natural breeding (NAT, control), or transfer of embryos generated through natural breeding (NAT-ET), in vitro fertilization (IVF) or in vitro activation (IVA; parthenogenetic clones). On Day 22 of pregnancy, caruncle (CAR; maternal placenta) and fetal membranes (FM; fetal placenta) were snap-frozen separately for RNA extraction followed by quantitative real-time PCR. In addition, cross sections of gravid uterus were fixed and then used for immunohistochemical detection and image analysis of 5 mC in FM. In FM, expression of mRNA for Dnmt3a was ∼2-fold greater (P < 0.01) in IVA compared with the other groups and was similar in NAT, NAT-ET and IVF groups. Expression of 5 mC was ∼2- to 3-fold greater (P < 0.02) in IVF and IVA than in NAT. In CAR, mRNA expression for Dnmt1 was ∼1.5-fold greater (P < 0.04) in IVA compared with the other groups, but Dnmt3a expression was less (P < 0.04) in NAT-ET and IVA than NAT. Expression of mRNA for Dnmt1 in FM and 3b in FM and CAR was similar in all groups. In IVA and/or IVF pregnancy, increased expression of Dnmt3a mRNA and/or 5 mC in FM may indicate de novo methylation in the fetal placenta. Furthermore, in pregnancies created through ART, decreased expression of Dnmt3a in CAR may indicate reduced de novo methylation in maternal placenta. Thus, in sheep, ART may have specific effects on growth and function of utero-placental and fetal tissues through regulation of DNA methylation and likely other mechanisms. These data provide a foundation for determining the basis for altered DNA methylation of specific genes in placental and embryonic tissues in compromised pregnancies. In addition, these data will help us to better understand placental regulatory mechanisms in compromised pregnancies and to identify strategies for rescuing such pregnancies. Supported by Hatch Project ND01712; USDA grant 2007-01215 to LPR and ATGB, NIH grant HL64141 to LPR and DAR and NSF-MRI-ARRA grant to ATGB.


2002 ◽  
Vol 76 (12) ◽  
pp. 6244-6256 ◽  
Author(s):  
Joo Wook Ahn ◽  
Kenneth L. Powell ◽  
Paul Kellam ◽  
Dagmar G. Alber

ABSTRACT Gammaherpesviruses are associated with a number of diseases including lymphomas and other malignancies. Murine gammaherpesvirus 68 (MHV-68) constitutes the most amenable animal model for this family of pathogens. However experimental characterization of gammaherpesvirus gene expression, at either the protein or RNA level, lags behind that of other, better-studied alpha- and beta-herpesviruses. We have developed a cDNA array to globally characterize MHV-68 gene expression profiles, thus providing an experimental supplement to a genome that is chiefly annotated by homology. Viral genes started to be transcribed as early as 3 h postinfection (p.i.), and this was followed by a rapid escalation of gene expression that could be seen at 5 h p.i. Individual genes showed their own transcription profiles, and most genes were still being expressed at 18 h p.i. Open reading frames (ORFs) M3 (chemokine-binding protein), 52, and M9 (capsid protein) were particularly noticeable due to their very high levels of expression. Hierarchical cluster analysis of transcription profiles revealed four main groups of genes and allowed functional predictions to be made by comparing expression profiles of uncharacterized genes to those of genes of known function. Each gene was also categorized according to kinetic class by blocking de novo protein synthesis and viral DNA replication in vitro. One gene, ORF 73, was found to be expressed with α-kinetics, 30 genes were found to be expressed with β-kinetics, and 42 genes were found to be expressed with γ-kinetics. This fundamental characterization furthers the development of this model and provides an experimental basis for continued investigation of gammaherpesvirus pathology.


1996 ◽  
Vol 16 (8) ◽  
pp. 4555-4565 ◽  
Author(s):  
P M Vertino ◽  
R W Yen ◽  
J Gao ◽  
S B Baylin

Recent studies showing a correlation between the levels of DNA (cytosine-5-)-methyltransferase (DNA MTase) enzyme activity and tumorigenicity have implicated this enzyme in the carcinogenic process. Moreover, hypermethylation of CpG island-containing promoters is associated with the inactivation of genes important to tumor initiation and progression. One proposed role for DNA MTase in tumorigenesis is therefore a direct role in the de novo methylation of these otherwise unmethylated CpG islands. In this study, we sought to determine whether increased levels of DNA MTase could directly affect CpG island methylation. A full-length cDNA for human DNA MTase driven by the cytomegalovirus promoter was constitutively expressed in human fibroblasts. Individual clones derived from cells transfected with DNA MTase (HMT) expressed 1- to 50-fold the level of DNA MTase protein and enzyme activity of the parental cell line or clones transfected with the control vector alone (Neo). To determine the effects of DNA MTase overexpression on CpG island methylation, we examined 12 endogenous CpG island loci in the HMT clones. HMT clones expressing > or = 9-fold the parental levels of DNA MTase activity were significantly hypermethylated relative to at least 11 Neo clones at five CpG island loci. In the HMT clones, methylation reached nearly 100% at susceptible CpG island loci with time in culture. In contrast, there was little change in the methylation status in the Neo clones over the same time frame. Taken together, the data indicate that overexpression of DNA MTase can drive the de novo methylation of susceptible CpG island loci, thus providing support for the idea that DNA MTase can contribute to tumor progression through CpG island methylation-mediated gene inactivation.


1994 ◽  
Vol 14 (6) ◽  
pp. 4225-4232
Author(s):  
A N Magewu ◽  
P A Jones

Cytosine methylation at CpG dinucleotides is thought to cause more than one-third of all transition mutations responsible for human genetic diseases and cancer. We investigated the methylation status of the CpG dinucleotide at codon 248 in exon 7 of the p53 gene because this codon is a hot spot for inactivating mutations in the germ line and in most human somatic tissues examined. Codon 248 is contained within an HpaII site (CCGG), and the methylation status of this and flanking CpG sites was analyzed by using the methylation-sensitive enzymes CfoI (GCGC) and HpaII. Codon 248 and the CfoI and HpaII sites in the flanking introns were methylated in every tissue and cell line examined, indicating extensive methylation of this region in the p53 gene. Exhaustive treatment of an osteogenic sarcoma cell line, TE85, with the hypomethylating drug 5-aza-2'-deoxycytidine did not demethylate codon 248 or the CfoI sites in intron 6, although considerable global demethylation of the p53 gene was induced. Constructs containing either exon 7 alone or exon 7 and the flanking introns were transfected into TE85 cells to determine whether de novo methylation would occur. The presence of exon 7 alone caused some de novo methylation to occur at codon 248. More extensive de novo methylation of the CfoI sites in intron 6, which contains an Alu sequence, occurred in cells transfected with a vector containing exon 7 and flanking introns. With longer time in culture, there was increased methylation at the CfoI sites, and de novo methylation of codon 248 and its flanking HpaII sites was observed. These de novo-methylated sites were also resistant to 5-aza-2'-deoxycytidine-induced demethylation. The frequent methylation of codon 248 and adjacent Alu sequence may explain the enhanced mutability of this site as a result of the deamination of the 5-methylcytosine.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1329-1329
Author(s):  
David A. Germain ◽  
Tamara Lamprecht ◽  
Margaret Young ◽  
Timothy J. Ley

Abstract Abstract 1329 De novo CpG methylation is catalyzed by two enzymes (DNMT3A and DNMT3B), while DNMT1 is responsible for maintenance methylation during cell replication. DNMT3L, a catalytically inactive protein, interacts with and influences DNMT3A and DNMT3B target preference and methylation kinetics. Recurrent mutations in DNMT3A have been found in over 20% of patients with acute myeloid leukemia (AML) and have been associated with poor clinical outcomes (Ley, TJ et al. NEJM, 2010). Greater than 50% of DNMT3A mutations are found at position R882 within the catalytic domain. Because R882H mutations in AML are nearly always heterozygous, because the mutant allele is expressed at the same level as the corresponding WT allele (Ley, TJ et al. NEJM, 2010), and because the mutant enzyme has reduced methyltransferase activity (Yamashita, Y et al. Oncogene, 2010; Holz-Schietinger, C et al. JBC, 2012), it has been suggested that the R882H mutation contributes to leukemogenesis by leading to haploinsufficiency for DNMT3A. However, mice haploinsufficient for Dnmt3a exhibit normal hematopoiesis, while HSPCs lacking Dnmt3a exhibit increased self-renewal and decreased differentiation after serial transplantation (Challen, GA et al. Nat Genet, 2011). To address this conundrum, we have studied the R882H mutation in a setting that mimics the intrinsic de novo methylation capacity of a typical AML cell. Using expression array and RNA-Seq data from 178 AML patients, we discovered that DNMT3L is not expressed in AML cells, and that DNMT3A is expressed on average 2.3-fold higher than DNMT3B. Interestingly, 92% of AML patients predominantly express inactive splice variants of DNMT3B, regardless of FAB or mutational profile (median ratio of inactive to active DNMT3B transcripts is 3.1:1). Given that the inactive splice variant DNMT3B3 is the most highly expressed isoform in most patients in our cohort, we explored the functional interactions between WT DNMT3A, R882H DNMT3A, and DNMT3B3 using recombinant enzymes made in eukaryotic cells. In vitro methylation of plasmid DNA (pcDNA3.1) with 3H-SAM using purified recombinant full-length human DNMT3A protein confirmed that the R882H mutation severely reduces the catalytic activity of DNMT3A, resulting in an enzyme with ∼10% of the activity of the WT enzyme. These results were verified by independent in vitro methylation experiments analyzed by bisulfite sequencing, which also revealed that the CpG-flanking sequence preferences of WT and R882H DNMT3A are identical and consistent with the expected “TNCGCY” motif previously described (Wienholz, BL et al. PLoS Genet, 2010). Mixing WT and R882H DNMT3A at equimolar ratios resulted in no significant changes in CpG-flanking sequence preference (compared to WT or R882H enzyme alone; Spearman correlation between WT DNMT3A and WT+R882H DNMT3A = 0.99). In contrast, mixing WT and R882H DNMT3A at equimolar ratios in a 12-hour methylation assay demonstrated that R882H DNMT3A exerts an inhibitory effect on the catalytic activity of WT DNMT3A in vitro. Instead of increasing net methylation activity by a predicted 10% (summing the activity of the two individual enzymes), R882H DNMT3A led to a 20% reduction in the measured methylation. Similarly, the addition of catalytically inactive DNMT3B3 to WT DNMT3A resulted in a mean decrease in methylation of 38%. Combining equimolar amounts of WT DNMT3A, R882H DNMT3A, and DNMT3B3 led to an additive inhibition of methylation compared to WT DNMT3A alone (62% decrease; p < 0.001; Figure 1). This scenario closely mimics the ratio of these enzymes in AML cells, and our data therefore suggest that the additive inhibitory effects of R882H DNMT3A and DNMT3B3 could severely reduce the total de novo methylation activity of DNMT3A in AML cells. The reduction of enzyme activity below haploinsufficient levels may be important for AML pathogenesis, and these findings provide a mechanism to achieve these levels. Figure 1: The de novo methyltransferase activity of WT DNMT3A is inhibited by R882H DNMT3A and DNMT3B3. Mixing equimolar amounts of WT DNMT3A, R882H DNMT3A, and DNMT3B3 leads to additive inhibition of methylation by 62% (p < 0.001). Figure 1:. The de novo methyltransferase activity of WT DNMT3A is inhibited by R882H DNMT3A and DNMT3B3. Mixing equimolar amounts of WT DNMT3A, R882H DNMT3A, and DNMT3B3 leads to additive inhibition of methylation by 62% (p < 0.001). Disclosures: Ley: Washington University: Patents & Royalties.


Blood ◽  
2011 ◽  
Vol 117 (8) ◽  
pp. 2348-2357 ◽  
Author(s):  
Susanne Schnittger ◽  
Frank Dicker ◽  
Wolfgang Kern ◽  
Nicole Wendland ◽  
Jana Sundermann ◽  
...  

Abstract Analyses of 164 RUNX1 mutations (RUNX1mut) in 147 of 449 patients (32.7%) with normal karyotype or noncomplex chromosomal imbalances were performed. RUNX1mut were most frequent in acute myeloid leukemia French-American-British classification M0 (65.2%) followed by M2 (32.4%) and M1 (30.2%). Considering cytogenetics, RUNX1mut were most frequent in cases with +13 (27 of 30, 90%), whereas frequencies were similar in other cytogenetic groups (26%-36%). The molecular genetic markers most frequently associated with RUNX1mut were partial tandem duplication in the MLL gene (19.7%), internal tandem duplication in the FLT3 gene (FLT3-ITD; 16.3%), and NRAS mutations (9.5%). Patients with RUNX1mut had shorter overall and event-free survival compared with RUNX1 wild-type cases (median, 378 days vs not reached, P = .003; and median, 285 vs 450 days, P = .003, respectively). In addition, it was shown that the adverse effect of RUNX1 was independent of the adverse effect of FLT3-ITD as well as of the high frequency of prognostically favorable NPM1mut and CEBPAmut in the RUNX1wt group. No effect of the type or localization of the individual RUNX1 mutations was observed. Multivariate analysis showed independent prognostic relevance for overall survival for RUNX1mut (P = .029), FLT3-ITD (P = .003), age (P < .001), and white blood cell count (P < .002).


2014 ◽  
Vol 26 (8) ◽  
pp. 1107 ◽  
Author(s):  
Mohammad Bozlur Rahman ◽  
Md. Mostofa Kamal ◽  
Tom Rijsselaere ◽  
Leen Vandaele ◽  
Mohammed Shamsuddin ◽  
...  

Shortly after penetration of the oocyte, sperm DNA is actively demethylated, which is required for totipotent zygotic development. Aberrant DNA methylation is thought to be associated with altered chromatin condensation of spermatozoa. The objectives of this study were to investigate the dynamics of DNA methylation reprogramming in the paternal pronucleus and subsequent fertilisation potential of heat-stressed bull spermatozoa having altered chromatin condensation. Hence, bovine zygotes (n = 1239) were collected at three different time points (12, 18 and 24 h post insemination, hpi), and stained with an antibody against 5-methylcytosine. Fluorescence intensities of paternal and maternal pronuclei were measured by ImageJ. DNA methylation patterns in paternal pronuclei derived from heat-stressed spermatozoa did not differ between time points (P > 0.05), whereas control zygotes clearly showed demethylation and de novo methylation at 18 and 24 hpi, respectively. Moreover, heat-stressed spermatozoa showed a highly reduced (P < 0.01) fertilisation rate compared with non-heat-stressed or normal control spermatozoa (53.7% vs 70.2% or 81.5%, respectively). Our data show that the normal pattern of active DNA demethylation followed by de novo methylation in the paternal pronucleus is perturbed when oocytes are fertilised with heat-stressed spermatozoa, which may be responsible for decreased fertilisation potential.


Sign in / Sign up

Export Citation Format

Share Document