scholarly journals The physical properties and strength characteristics of kenaf plants

2019 ◽  
Vol 65 (No. 4) ◽  
pp. 131-136
Author(s):  
Olumide Falana ◽  
Olabanjo Aluko ◽  
Dare Adetan ◽  
Jimmy Osunbitan

This article reports some physical properties and strength characteristics of two kenaf (Hibiscus cannabinus) varieties in Nigeria at critical stages of harvest with a view of understanding the plant material reaction to the load and deformation. The kenaf samples were subjected to a uniaxial compression test between two parallel plates at a loading rate of 20 mm·min<sup>–1</sup> and a uniaxial bending test between two supports on each end at a loading rate of 50 mm·min<sup>–1 </sup>using a Universal Instron Testing Machine (Instron, USA). The results of the parameters studied revealed that Tianung 1 gave the higher stem height, stem diameter, compressive stress, bending stress, rupture load, rupture energy, Young’s modulus, and toughness, which were 293.10 cm, 18.45 mm, 8.70 MPa, 44.86 MPa, 191.51 N, 3.43 J·mm<sup>–2</sup>, 350.81 MPa, and 6.85 N·mm<sup>–1</sup>, respectively, at four months after planting. The parameters studied significantly increased with maturity for the two kenaf varieties. However, the moisture content significantly reduced with maturity.

2012 ◽  
Vol 232 ◽  
pp. 24-27
Author(s):  
Zong Zhan Li ◽  
Jun Lin Tao ◽  
Yi Li

This paper makes the acoustic emission of granite under uniaxial compression and splitting tensile test by electro-hydraulic testing machine and AE .We studied the relationship of uniaxial compressive strength and splitting tensile strength with the loading rate and AE characteristics of granite .The results show that uniaxial compressive strength and peak strain raise with loading rate, the AE energy gradually increases and get maximum in the 30% of the peak stress in the process of uniaxial compression test, and in the splitting tensile AE energy generates in the initial loading and gets maximum when the granite brittle fracture.


2013 ◽  
Vol 38 (5) ◽  
pp. E144-E153 ◽  
Author(s):  
M Chang ◽  
J Dennison ◽  
P Yaman

SUMMARY Purpose The purpose of this study was to evaluate the physical properties of current formulations of composite resins for polymerization shrinkage, surface hardness, and flexural strength. In addition, a comparison of Knoop and Vickers hardness tests was made to determine if there was a correlation in the precision between the two tests. Materials and Methods Four composite resin materials were used: Filtek LS (3M-ESPE), Aelite LS (Bisco), Kalore (GC America), and Empress Direct (Ivoclar). Ten samples of each composite (shade Vita A2) were used. Polymerization shrinkage was measured with the Kaman linometer using 2-mm-thick samples, cured for 40 seconds and measured with digital calipers for sample thickness. Surface microhardness samples were prepared (2-mm thick × 12-mm diameter) and sequentially polished using 600-grit silicone carbide paper, 9 μm and 1 μm diamond polishing solutions. After 24 hours of dry storage, Knoop (200 g load, 15 seconds dwell time) and Vickers (500 g load, 15 seconds dwell time) hardness tests were conducted. Flexural strength test samples (25 × 2 × 2 mm) were stored in 100% relative humidity and analyzed using a three-point bending test with an Instron Universal Testing Machine (Instron 5565, Instron Corp) applied at a crosshead speed of 0.75 ± 0.25 mm/min. Maximum load at fracture was recorded. One-way analysis of variance and Tukey multiple comparison tests were used to determine significant differences in physical properties among materials. Results Filtek LS had significantly lower shrinkage (0.45 [0.39] vol%). Aelite LS demonstrated the greatest Knoop surface hardness (114.55 [8.67] KHN), followed by Filtek LS, Kalore, and Empress Direct (36.59 [1.75] KHN). Vickers surface hardness was significantly greater for Aelite LS (126.88 [6.58] VH), followed by Filtek LS, Kalore, and Empress Direct (44.14 [1.02] VH). Flexural strength (MPa) was significantly higher for Aelite LS and Filtek LS (135.75 [17.35]; 129.42 [9.48]) than for Kalore and Empress Direct (86.84 [9.04]; 92.96 [9.27]). There is a strong correlation between results obtained using Knoop and Vickers hardness tests (r=0.99), although Vickers values were significantly greater for each material. Conclusion Results suggest that Aelite LS possesses superior hardness and flexural strength, while Filtek LS has significantly less shrinkage compared with the other composites tested.


2016 ◽  
Vol 854 ◽  
pp. 65-72
Author(s):  
Franz Berge ◽  
Heiko Winderlich ◽  
Christina Krbetschek ◽  
Madlen Ullmann ◽  
Rudolf Kawalla

In this study, the influence of sheet thickness, loading rate, and punch diameter on the bending behaviour of twin-roll cast, rolled and heat-treated AZ31 magnesium alloy was investigated. Therefore, the 3-point bending test was performed at room temperature using an electromechanical testing machine (v = 0.1−10 mm/s) with different punch diameters (D = 2 mm, 8 mm, 16 mm). The initial material has a recrystallized microstructure with grain sizes of 6−9 µm. It is shown by the mechanical investigations that the bending force increases with the sheet thickness. In contrast to this, the bending angle is independent of the sheet thickness. In addition, the punch diameter and the loading rate do not influence the maximum force and the bending angle significantly.


2019 ◽  
Vol 65 (No. 2) ◽  
pp. 33-39 ◽  
Author(s):  
Negar Ahangarnezhad ◽  
Gholamhassan Najafi ◽  
Ahmad Jahanbakhshi

Studying the physical and mechanical properties of agricultural products has been the subject of criticism and discussion for many years already and has attracted the attention of many researchers. The physical and mechanical properties of agriculture products are the most important parameters in the design of agricultural machinery sorting systems, transmissions, processing and packaging systems. The potato is one of the most important agricultural products as a food resource. The aim of this research is to investigate the physical properties and mechanical behaviour of the potato due to its importance and the current inadequate information about it. In this research, some of the physical and mechanical properties of the potato were measured in standard conditions. The length, width, thickness, geometric mean diameter and arithmetical diameter, sphericity, surface area, aspect ratio, mass, volume, bulk density and the  projected mean area were included in the physical properties. The mechanical properties of the potato were determined by using a universal testing machine (MRT-5; Santam, Germany) with a uniaxial compression test. Then, the mechanical properties were measured with four repetitions. The physical properties of the potato such as length, width, thickness, mass, volume and geometric mean diameter had a direct relationship, while the density had an inverse relation to the size. The result of the mechanical properties of the sample, such as vertical stress, elasticity module, deformation energy, fracture force and deformation were obtained respectively as 0.34 MPa, 3.09 MPa, 892.02 J, 8.80 N and 207.22 mm. The comparison of the potato’s real volume with the standard shapes showed that the potato’s shape is similar to an oval due to the largest determination coefficient (R<sup>2</sup> = 0.86). The results of this research can be used for the design and optimisation of the processing equipment, as well as the transporting, sorting and packing of the potato crop.


Alloy Digest ◽  
1970 ◽  
Vol 19 (5) ◽  

Abstract CDA 710 is a cupro-nickel alloy having high resistance to seawater corrosion and good stress-rupture properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: Cu-215. Producer or source: Anaconda American Brass Company.


Alloy Digest ◽  
1994 ◽  
Vol 43 (2) ◽  

Abstract THERMO-SPAN ALLOY is a precipitation-hardenable superalloy with a low coefficient of expansion combined with tensile and stress-rupture strength. Thermal fatigue resistance is inherent. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming and heat treating. Filing Code: FE-105. Producer or source: Carpenter.


Alloy Digest ◽  
1965 ◽  
Vol 14 (4) ◽  

Abstract FANSTEEL 42 Metal is a molybdenum-base alloy recommended for high temperature applications. It has high recrystallization temperature and good stress-rupture properties. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, joining, and surface treatment. Filing Code: Mo-6. Producer or source: Fansteel Metallurgical Corporation.


Alloy Digest ◽  
2014 ◽  
Vol 63 (7) ◽  

Abstract BrushForm 96 strip is a high-performance, heat treatable spinodal copper-nickel-tin alloy designed to provide optimal formability and strength characteristics in conductive spring applications. It is available in both pre-heat treated (mill hardened) and heat treatable (age hardenable) forms. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. and bend strength. It also includes information on forming. Filing Code: Cu-833. Producer or source: Materion Brush Performance Alloys.


2020 ◽  
Vol 240 ◽  
pp. 117681
Author(s):  
Mehran Aziminezhad ◽  
Sahand Mardi ◽  
Pouria Hajikarimi ◽  
Fereidoon Moghadas Nejad ◽  
Amir H. Gandomi

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 959
Author(s):  
Verónica Rodríguez ◽  
Celia Tobar ◽  
Carlos López-Suárez ◽  
Jesús Peláez ◽  
María J. Suárez

The aim of this study was to investigate the load to fracture and fracture pattern of prosthetic frameworks for tooth-supported fixed partial dentures (FPDs) fabricated with different subtractive computer-aided design and computer-aided manufacturing (CAD-CAM) materials. Materials and Methods: Thirty standardized specimens with two abutments were fabricated to receive three-unit posterior FDP frameworks with an intermediate pontic. Specimens were randomly divided into three groups (n = 10 each) according to the material: group 1 (MM)—milled metal; group 2 (L)—zirconia; and group 3 (P)—Polyetheretherketone (PEEK). The specimens were thermo-cycled and subjected to a three-point bending test until fracture using a universal testing machine (cross-head speed: 1 mm/min). Axial compressive loads were applied at the central fossa of the pontics. Data analysis was made using one-way analysis of variance, Tamhane post hoc test, and Weibull statistics (α = 0.05). Results: Significant differences were observed among the groups for the fracture load (p < 0.0001). MM frameworks showed the highest fracture load values. The PEEK group registered higher fracture load values than zirconia samples. The Weibull statistics corroborated these results. The fracture pattern was different among the groups. Conclusions: Milled metal provided the highest fracture load values, followed by PEEK, and zirconia. However, all tested groups demonstrated clinically acceptable fracture load values higher than 1000 N. PEEK might be considered a promising alternative for posterior FPDs.


Sign in / Sign up

Export Citation Format

Share Document