scholarly journals  Effect of rapeseed methyl ester on fuel consumption and engine power

2012 ◽  
Vol 58 (No. 2) ◽  
pp. 37-45
Author(s):  
M. Pexa ◽  
K. Kubín

This paper describes the effect of a mixture of rapeseed methyl ester and diesel oil on fuel consumption and power parameters of tractor engine. The hydraulic dynamometer was used to load the engine of Zetor Forterra 8641 tractor over rear power take-off. The measured tractor is almost new with less than 100 h worked. The measurements were realized for several ratios of diesel oil and rapeseed methyl ester (from pure diesel to pure rapeseed methyl ester). The engine was loaded by the dynamometer in several working points which were predefined by engine speed and its torque. The fuel consumption was measured by the flow meter in each of these points. The reduction of engine’s power parameters and the increase of specific fuel consumption are expected due to the nature of rapeseed methyl ester such as e.g. lower calorific value.  

2014 ◽  
Vol 60 (No. 1) ◽  
pp. 1-9
Author(s):  
M. Pexa ◽  
K. Kubín

This paper describes the effect of a mixture of rapeseed methyl ester and diesel oil on emission production of tractor engine. The hydraulic dynamometer was used to load the engine of Zetor Forterra 8641 tractor over rear power take-off. The measured tractor is almost new with less than 100 h worked. The measurements were realized for several ratios of diesel oil and rapeseed methyl ester (from pure diesel to pure rapeseed methyl ester). The engine was loaded by the dynamometer in several working points which were predefined by engine speed and its torque. The production of carbon monoxide (CO), carbon dioxide (CO<sub>2</sub>), hydrocarbons (HC), nitrogen oxides (NO<sub>x</sub>) and particulate matter (PM) were measured in each of these points. The comparison of different fuels was performed using the Non-Road Steady Cycle (NRSC) test procedure. Engine maps were also created for each emission component and for all of tested fuels. &nbsp; &nbsp;


2013 ◽  
Vol 59 (No. 4) ◽  
pp. 121-127
Author(s):  
P. Trávníček ◽  
M. Valach ◽  
Z. Hlaváčová ◽  
J. Mareček ◽  
T. Vítěz ◽  
...  

The goal of this study was the determination of basic physical properties such as density, calorific value and rheological properties of liquid biofuels. Biofuels on the base of bioethanol and rapeseed methyl ester were chosen. Following control samples were selected: diesel oil without admixture of methyl esters and commercially available diesel oils with small amount of methyl ester admixture (6.2 and 6.5%). Dynamic viscosities of individual samples were measured in the range from &ndash;10&deg;C to 50&deg;C. Then dependence of shear rate on shear stress was measured at temperatures &ndash;10, 0, 20 and&nbsp;40&deg;C. The most of samples showed the Newtonian behaviour. However, samples with high content of methyl esters or pure methyl esters showed thixotropy behaviour at the low temperature.


Transport ◽  
2010 ◽  
Vol 25 (4) ◽  
pp. 403-410 ◽  
Author(s):  
Algirdas Janulevičius ◽  
Antanas Juostas ◽  
Gediminas Pupinis

Tractor load influences engine work parameters having an influence on the working economy and productivity of the complete tractor aggregate. The operational economy and productivity of the tractor is mostly evident when its engine power is utilized at least at 80% and engine speed is as low as possible. The paper analyses the engine parameters of tractor Massey Ferguson MF 8480 during the operational period of road construction works. Control tests on the parameters of the engine load of the tractor engine in combination with the employed milling equipment WS 2500 produced by the company ‘Wirtgen’ were performed. The study was carried out using engine load tables and graphs collected and stored in the so called ECU Load Profileintegrated in Electronic Engine Control Units. Theoretical analysis was made and an equation presented to establish the relation between engine power, engine speed and the quantities of cyclic fuel consumption. The study results present the distribution graphs of work time and fuel consumption at different engine speed during the operational period. The paper also indicates engine load and fuel consumption graphs of the tractor in combination with milling equipment. The article has also disclosed that the analysis of engine speed and load modes using information obtained from tractor‐integrated digital microprocessors reveals the operation quality of the tractor.


Author(s):  
Gvidonas LABECKAS ◽  
Stasys SLAVINSKAS ◽  
Tomas MACKEVIČIUS

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on rapeseed methyl ester (B) and rapeseed methyl ester -butanol (Bu5, Bu10, Bu15) blends, at various loads and 2000 rpm engine speeds. The experimental tests were performed on a four-stroke, single-cylinder, air-cooled diesel engine FL511. The bench test results showed that the brake specific fuel consumption increased, when operating on biodiesel-butanol fuel blends compared to neat biodiesel. The maximum brake thermal efficiency sustained at the levels from 7.3% to 12.9% lower in comparison with neat biodiesel operating at low engine load. When the engine was running at maximum torque mode using biodiesel-butanol fuel blend Bu15 the total emissions of nitrogen oxides decreased. Thus, the greatest fossil fuel challenge related with the simultaneous reduction of both the NOx emissions and the smoke opacity (PM) could be reasonably solved by switching a diesel engine on totally renewable biodiesel-n-butanol biofuel blends.Keywords: diesel engine, rapeseed oil derived biodiesel, n-butanol, engine efficiency, brake specific fuel consumption, emissions, smoke opacity.


2015 ◽  
Vol 76 (5) ◽  
Author(s):  
N. R. Abdullah ◽  
Z. Michael ◽  
A. R. Asiah ◽  
A. J. Helmisyah ◽  
S. Buang

Biodiesel is used widely as an alternative fuel for diesel engine due to biodegradable, oxygenated, renewable and compatible with diesel engines . In fact, biodiesel emission has decreased the levels of potentially carcinogenic compounds. However, a certain biodiesel such as Jatropha Oil Methyl Ester (JOME) has resulted in the increase of specific fuel consumption and higher NOx emissions. Therefore, the objective of this study is to investigate the effects of Palm Oil Methyl Ester (POME) in the blended fuel (Fossil fuel + JOME) on the fuel consumption and exhaust emission. Experiments were carried out at a constant engine speed (2000 rpm) with variable of engine loads. Results show that the addition of POME leads to the significant reduction in brake specific fuel consumption (BSFC), Total hydrocarbons (THCs),  carbon monoxide (CO) and nitrogen dioxide (NOx) emissions. This study shows a huge difference for Total hydrocarbons emission of blends with 5% POME compared to blends with 10% and 15% of POME. Carbon monoxide emission for blends with 15% POME is the lowest at constant engine speed with various engine loads which in average is 53% lower than blends of 5% POME. This is because blends with higher percentage of POME has higher cetane number hence shortened the ignition delay resulted  in the lower possibility of formation of rich fuel zone and thus reduces CO emissions.  Moreover, the higher percentage of POME also resulted in lower NOx emission regardless of engine loads. The blends with 15% POME had the lowest NOx emission which is 25% less compared with the blends of 5% POME.  The study recommended that, additional POME to the blended fuel can be considered as a good initiative to improve blended fuel property for diesel engine due to its potential to improve engine emissions and reduce brake specific fuel consumption. In conclusion, the blends of POME into (Fossil fuel + JOME) improves engine emission without significantly increasing fuel consumption.


2021 ◽  
Vol 8 (3) ◽  
pp. 89-96
Author(s):  
Herbert Hasudungan Siahaan ◽  
Armansyah H Tambunan ◽  
Desrial ◽  
Soni Solistia Wirawan

A helical barrier as air-biogas mixing device was designed and tested for direct use of biogas from digester in otto cycle generator set. Homogeneity of the air-fuel mixture can give better combustion reaction and increase engine power. The design was based on simulation, which shows that a 0.039 m length of helical barrier gave a 5% increase in power compared to non-helical barrier. Likewise, the simulations also showed that the helical barrier reduced specific fuel consumption (SFC) by 8%. Accordingly, the mixer with helical barrier was designed, and fabricated. Its performance test confirms the improvement resulted by using helical barriers as air-biogas mixer in the engine. The experiment showed that the power increased by 5% when using helical barrier, while SFC decreased by 4.5%. It is concluded that the helical barrier can increase the homogeneity of the mixture resulting in better engine performance. Besides, emissions produced from the engine using a helical barrier also decreased.


2016 ◽  
Vol 46 (7) ◽  
pp. 1200-1205 ◽  
Author(s):  
Javier Solis Estrada ◽  
José Fernando Schlosser ◽  
Marcelo Silveira de Farias ◽  
Fabrício Azevedo Rodrigues ◽  
Alfran Tellechea Martini ◽  
...  

ABSTRACT: This research evaluated the performance of a diesel engine in an agricultural tractor, using Diesel S500 (B5) and mixture with 3% (ED3), 6% (ED6), 9% (ED9), 12% (ED12) and 15% (ED15) of hydrous ethanol. Variables evaluated were the power, torque, specific fuel consumption, torque reserve, speed reserve and elasticity index of engine. Results indicated that using B5 and ED3 the values of torque and engine power not differ, in addition, with the ED3 the fuel consumption was lower than 5.92%. Using ED12, power has reduced in 2.97%, compared with B5, while their fuel consumption had no difference. With ED15, the power was lower 6.30% and the fuel consumption increase 3.77%, both compared with B5. Torque reserve value was increased with increasing the ethanol content in B5, reducing the speed reserve and elasticity index of engine. Ethanol in Diesel S500 (B5) can be used as an alternative fuel in agricultural tractor engines without presenting high changes in the performance, since the ethanol content is at low percentages, up to 12%.


Author(s):  
Antanas Juostas ◽  
Algirdas Janulevičius

The paper presents tractor working data and their engine conditions from economical and ecological point of view. Overlooked results presented in literature have a straight relation with reduction of tractor fuel consumption and unfriendly impact on the environment. The results of measurements show that for investigation of tractor performance quality during its working life, information collected in its microprocessors can be used. Investigation results of engine speed and torque aspects of different Deutz Fahr Agrotron tractor models with different working output are presented in the paper. Investigation results show that a tractor on average worked from 37% to 52% of the total working hours at a high torque (>50% Mmax ) and at medium (1000–2000 rpm) and high (>2000 rpm) engine speed. The investigation results show that almost half of tractor working time is unreasonable. The paper presents big improvement possibilities for tractor operating technologies by using a wider range of engine power, decreasing fuel consumption and unfriendly impact on the environment. Santrauka Tirta traktorių degalų sąnaudų ir žalingo poveikio aplinkai mažinimo galimybės. Matavimų rezultatais pagrindžiama, kad traktorių darbo kokybei per eksploatavimo laikotarpį tirti galima naudoti jų mikroprocesoriuose sukauptą informaciją. Pateikiami įvairių modelių ir įvairaus išdirbio Deutz Fahr Agrotron traktorių darbo kokybės (variklio sūkių dažnio ir apkrovos aspektais) per eksploatavimo laikotarpį tyrimų rezultatai. Nustatyta, kad didele apkrova (>50 % Mmax) vidutiniais (1000–2000 min–1) ir dideliais (>2000 min–1) variklio sūkiais traktoriai vidutiniškai dirba 37–52 % eksploatacijos laikotarpio, ir apie pusę eksploatacijos trukmės traktorių darbas neracionalus. Daroma išvada, kad visą traktorių eksploatavimo laiką galima tobulinti technologijas, parenkant tinkamesnius variklių darbo režimus, mažinti degalų sąnaudas ir žalingą poveikį aplinkai. Резюме Целью исследований было уменьшение потребления горючего в тракторных двигателях и их вредного влияния на окружающую среду. Проанализированы качественные характеристики (обороты и нагрузка двигателя ) разных моделей тракторов фирмы Deutz Fahr Agrotron, с разной наработкой моточасов за весь период эксплуатации. Исследованиями выявлено, что время работы тракторов с большой нагрузкой (>50% Mmax) при средних (1000– 2000 мин–1) и больших (>2000 мин–1) оборотах двигателя составляет 37–52% всего периода эксплуатации. Около половины всего времени в период эксплуатации тракторы работают нерационально. Делается вывод, что в период эксплуатации тракторов существует возможность совершенствовать технологии, шире применять лучшие режимы работы двигателей, снижать потребление горючего и вредное влияние на окружающую среду.


Transport ◽  
2008 ◽  
Vol 23 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Antanas Juostas ◽  
Algirdas Janulevičius

Article analyzes tractor working and its engine conditions from economical point of view. Overview of tractor wheel slippage reliance on the traction force and weight utilization coefficient is given. Tractor maximum driving force according to road and field conditions, and driving speed are submitted. Literature and theoretical investigation analysis is done, where interaction between tractor wheels made‐up driving force and grip is analysed. Driving speed and driving force dependence on rolling resistance and total aggregate weight using nominal power is described. In the present experimental research reduction in fuel consumption of tractor transport aggregate by reducing engine speed and by keeping the same work speed, was determined.


2013 ◽  
Vol 33 (4) ◽  
pp. 758-763 ◽  
Author(s):  
Leonardo de A. Monteiro ◽  
Daniel Albiero ◽  
Kleber P. Lanças ◽  
André V. Bueno ◽  
Fabricio C. Masiero

The tire inflation pressure, among other factors, determines the efficiency in which a tractor can exert traction. It was studied the effect of using two tire inflation pressures, 110.4 kPa in the front and rear wheels, 124.2 kPa in the front wheel and 138 kPa in the rear wheels, the energetic efficiency of an agricultural tractor of 147 kW of engine power, in the displacement speed of 6.0 km.h-1, on track with firm surface, with the tractor engine speed of 2000 rpm. For each condition of the tire pressure, the tested tractor was subjected to constant forces in the drawbar of 45 kN and 50 kN, covering 30 meters. It was used a randomized complete block with a 2x2 factorial arrangement (tire pressure and drawbar power) with four replications, totaling 16 experimental units. Data were subjected to analysis of variance, using the Tukey test at 5% probability for comparison averages. The lowest hourly and specific fuel consumption, the lowest slippage of the wheelsets and the highest efficiency in the drawbar was obtained with the tire inflation pressure of 110.4 kPa in the front and rear tires of the tractor, highlighting that lower pressures improve energetic and operational performance of the tractor.


Sign in / Sign up

Export Citation Format

Share Document