scholarly journals Influence of sowing and harvest dates on production of two different cultivars of sugar beet  

2017 ◽  
Vol 63 (No. 2) ◽  
pp. 76-81 ◽  
Author(s):  
Pavlů Klára ◽  
Chochola Jaromír ◽  
Pulkrábek Josef ◽  
Urban Jaroslav

Small-plot trials conducted in 2013–2015 studied the impact of longer vegetation periods (by means of earlier drilling and/or later harvest) on production results of two sugar beet cultivars – one nematode-tolerant cultivar and one cultivar without such tolerance. The trials took place at two sites with different Heterodera schachtii infestation levels. In all trial seasons, root yield was significantly higher in the earlier drilled plots. On average, prolongation of the vegetation period in spring by 13 days increased root yield by 10.9%. Therefore, each day by which drilling is postponed represents a 0.7–0.8% loss of yield. As to sugar content, no statistically significant benefit of vegetation period prolongation by early drilling was found. The spring gain was slightly higher for the non-tolerant cultivar than for the tolerant one on average over all trial seasons. This result confirms the theory that nematodes impact the crop mainly in later stages of vegetation, and early drilling can thus help eliminating, to a certain degree, the risk of nematode damage. In the autumn, root yield increased by 14.3% on average over 39 days. The autumn daily gain was about half of the rate found in the spring. The increase in sugar content was between 0.6% and 1% (abs.) on average. Autumn growth achieved at the non-infested site was much higher than at the infested site.  

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Ivica Stancic ◽  
Jelica Zivic ◽  
Sasa Petrovic ◽  
Desimir Knezevic

This paper analyzes the impact of genes and proportional contribution of parental genotypes on the inheritance of root yield and sugar content in diploid hybrids of sugar beet. The survey included two diploid male-sterile monogerm lines and three single (SC) male-sterile hybrids as maternal components, while three multigerm diploids were used as pollinators. The partitioning of genotypic variance into additive and dominant components was performed by half sibling (HS) and full sibling (FS) covariance. The proportional contribution of individual components of crossbreeding (lines, testers, and interactions) was exhibited in the expression of certain characteristics of F1generation. Genotypic variance components showed a significant effect of nonadditive gene action (dominance) in the inheritance of root yield and sugar content, while the additive effect of genes was less significant. Maternal components had a greater proportional contribution to root yield, while lines, pollinators, and their interactions had an equal contribution to sugar content.


2011 ◽  
Vol 51 (No. 5) ◽  
pp. 232-236
Author(s):  
M. Pytlarz-Kozicka

Sugar beet yielding and, thus, the profitability of its cultivation depends on various conditions. These are mainly a&nbsp;dose of nitrogen fertilizing and anti-fungal plant protection. Based on the research carried out in a private-owned farm in Biała commune, Opole province, Poland, it was observed that the most important factors influencing plant development and root yield of sugar beets (var. Kassandra and Cortina) were genetic features of the investigated varieties and fungal control. They increased considerably root yield and sugar content. The doubled nitrogen dose from 90 to 180 kg N/ha enhanced a slight, statistically insignificant, root yield increase and a lower sugar content in beet roots. The three-year research showed that weather conditions during the vegetation period had a decisive effect on sugar beet plants development and fungal infestation. The variety Cortina was characterized with a significantly higher yield and a higher content of treacle forming compounds in the roots. The increase of N rate from 90 to 180 kg N/ha caused a significant increase of average root mass, leaves and dry matter yield and potassium and N-NH<sub>2</sub> in roots, but it also lowered sugar content. In the years with favorable conditions for fungal infestation, the use of fungicides helped to obtain a higher leaf/root ratio, higher root mass, higher root and leaf yield and higher dry matter and sugar yields. However, it did not have an effect on the content of chemical compounds producing treacle in sugar beet roots.


2015 ◽  
Vol 2 (1) ◽  
pp. 12-22 ◽  
Author(s):  
L. Pylypenko ◽  
K. Kalatur

Heterodera schachtii Schmidt, 1871 is one of the most economically important pests of sugar beet (Beta vulgaris L.) worldwide. It is also widespread in most sugar beet growing regions in Ukraine causing serious yield reduction and decreasing sugar content of sugar beet in infested fi elds. An advanced parasitic strategy of H. schachtii is employed to support nematode growth, reproduction and harmfulness. In intensive agriculture systems the nematode control measures heavily rely on nematicides and good agricultural practice (crop rota- tion in the fi rst place). But alternative strategies based on nematode resistant sugar beet cultivars and hybrids are required as none of nematicides approved for the open fi eld application are registered in Ukraine. Here we review the achievements and problems of breeding process for H. schachtii resistance and provide the results of national traditional breeding program. Since the beginning of 1980s fi ve sugar beet cultivars (Verchnyatskyi 103, Yaltuschkivska 30, Bilotcerkivska 45, BTs-40 and Yuvileynyi) and seventeen lines partly resistant or toler- ant to H. schachtii have been obtained throughout targeted crossing and progenies assessment in the infested fi elds. The further directions for better utilization of genetic sources for nematode resistance presented in na- tional gene bank collection are emphasized. There is a need for more accurate identifi cation of resistance genes, broader application of reliable molecular markers (suitable for marker-assisted selection of nematode resistant plants in the breeding process) and methods for genetic transformation of plants. Crop cash value and national production capacity should drive the cooperation in this fi eld. Knowledge as well as germplasm exchange are thereby welcomed that can benefi t breeding progress at national and international level.


2020 ◽  
Vol 13 (1) ◽  
pp. 222
Author(s):  
Miroslava Navrátilová ◽  
Markéta Beranová ◽  
Lucie Severová ◽  
Karel Šrédl ◽  
Roman Svoboda ◽  
...  

The aim of the presented article is to evaluate the impact of climate change on the sugar content of grapes in the Czech Republic during the period 2000–2019 through selected indicators on the basis of available secondary sources. Attention is focused on the developments in both the main wine-growing regions of Moravia and Bohemia. In the field of viticulture and wine-growing, the sugar content of grapes, as a basic parameter for the classification of wines, plays an important role. In the Czech Republic, the average sugar content of grapes has had a constantly growing trend. This trend is evident both in the wine-growing region of Bohemia and in the wine-growing region of Moravia. The impact of climate change, especially the gradual increase of average temperatures in the growing season, cannot be overlooked. It greatly affects, among other things, the sugar content of grapes. Calculations according to the Huglin Index and the Winkler Index were used to determine the relationship between climate and sugar content. These indexes summarize the course of temperatures during the entire vegetation period into a single numerical value. The results show that both indexes describe the effect of air temperature on sugar content in both wine regions of the Czech Republic in a statistically significant way. The Huglin Index shows a higher correlation rate. The Winkler Index proved to be less suitable for both areas. Alternatively, the Winkler Index calculated for a shorter growing season was tested, which showed a higher degree of correlation with sugar content, approaching the significance of the Huglin Index.


Author(s):  
Janja Kuzevski ◽  
Nada Milosevic ◽  
Sasa Krstanovic ◽  
Zora Jelicic

In sugar beet production, one of the most important factors that affect the yield, apart from genetic properties, is the use of mineral fertilizers. Considerate amounts of mineral fertilizers are used in sugar beet production. However, if agroecological conditions are not optimum, mineral fertilizers cannot be completely absorbed, which may lead to soil contamination. Therefore, research has been focusing on ways of using atmospheric nitrogen by means of nitrogen-fixing bacteria. Numerous researches have proved that one part of mineral fertilizers can be replaced by biological nitrogen. The aim of this research was to determine the effect of genotype, azotobacter and the amount of mineral fertilizers on the root yield of sugar beet and on the microbiological activity of the sugar beet rhizospheric soil. Three hybrids of sugar beet were used during the two years of the research. The seed of the hybrids was inoculated with three strains of azotobacter. Various amounts of NPK were used (0;30;60;90 kg/ha). At the end of the vegetation period, the following were determined: root yield, total number of bacteria, number of azotobacter, oligotrophic bacteria, ammonifiers, fungi, and actinomycetes in soil. Dehydrogenase activity was measured. The results were processed statistically (analysis of variance for factorial trials) and the effect of the factors was determined upon the expected mean square values. The yield was mainly affected by the amount of mineral fertilizers. However, the effect of mineral fertilizers was different with different inoculation treatments. The effect of the examined factors was dependant upon genotype, amount of mineral fertilizers, inoculation and the year of trials. The interaction between genotype, mineral fertilizers, inoculation and the year of trials was the factor that had the greatest effect on the number of almost all the examined soil microorganisms.


2011 ◽  
Vol 48 (No. 9) ◽  
pp. 418-423
Author(s):  
M. Antunović ◽  
D. Rastija ◽  
M. Pospišil

Aiming at determination differences in leaf and root potassium concentration of diverse sugar beet genotypes as well as its effect on sugar beet root quality and yield. Investigations comprising 15 sugar beet genotypes (five multigerm lines, five hybrids and five monogerm lines) were carried out on two soil types (Calcic luvisol: L-1 and L-3 and Calcic gleysol: L-2 and L-4) during two growing seasons. Root yield of the investigated genotypes on Calcic luvisol (50 t/ha) was higher, than on Calcic gleysol (34 t/ha). In general, multigerm lines were known for the highest leaf potassium concentration (2.75%), lowest root one (3.78 mmol/100 g root), highest sugar content (13.8%) and best root extractable sugar (1.5%). Monogerm lines had the lowest leaf potassium concentration (2.51%), highest root one (4.24 mmol/100 g root), lowest sugar content (12.9%), and the poorest extractable sugar (10.7%). Root yield of the investigated hybrids (48 t/ha) was higher by 16% compared to multigerm lines yield (42 t/ha) and as much as 35% higher compared to monogerm lines (36 t/ha). Sugar beet root potassium was in significantly negative correlation with sugar content at three localities (L-1: r = &ndash;0.485**, L-2: r = &ndash;0.096, L-3: r = &ndash;0.687**, L-4: r = &ndash;0.337**) whereas at all four localities it was in negative correlation with extractable sugar (L-1: r = &ndash;0.634**, L-2: r = &ndash;0.407**, L-3: r = &ndash;0.930**, L-4: r = &ndash;0.749**). Potassium concentration in sugar beet leaf was in significant positive correlation with sugar content at three localities (L-1: r = 0.382**, L-2: r = 0.231, L-3: r = 0.717**, L-4: r = 0.516**).


2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Agnė Sadauskienė ◽  
Zita Brazienė ◽  
Zenonas Dabkevičius

The research was conducted on 11 sugar beet varieties, grown at the Rumokai Experimental Station of the Lithuanian Research Center for Agriculture and Forestry, in 2016 and 2017. The experiments were carried out on two backgrounds: the crops were not sprayed and sprayed with fungicide epoxiconazole 125 g l–1. During the study years, rust (causative agent Uromyces beticola), powdery mildew (causative agent Erysiphe betae Vaňha Weltzien) and leaf spot disease (causative agent Cercospora beticola Sacc.) were the most prevalent in sugar beet. Rust, the intensity of which was 9.66–61.79%, caused most damage to sugar beet. The intensity of powdery mildew was 12.71–55.98% and that of leaf spot disease was 7.47–54.23%. Of the investigated varieties of sugar beet, the most sensitive to leaf spot disease were ‘Merens’, ‘Balear’, ‘Davinci’, ‘Kashmir’ and ‘Pottok’, the most resistant were ‘Berton’, ‘Selma KWS’ and ‘Wellington’. ‘Merens’ and ‘Texel’ were the most sensitive to rust. This disease was least damaging to the ‘Minta’, ‘Berton’ and ‘Strauss’ varieties. Powdery mildew was most harmful to leaves of the ‘Merens’, ‘Balear’ and ‘Minta’ varieties of sugar beet. The most resistant to powdery mildew was ‘Texel’. According to the average two-year data, the most productive was the ‘Pottok’ variety, whose root yield was 90.46– 93.85 t ha–1. The ‘Straus’ variety had the highest sugar content. Epoxiconazole increased the sugar beet yield from 0.44 to 6.53 t ha–1 in 2016 and from 0.07 to 11.63 t ha–1 in 2017.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 166 ◽  
Author(s):  
Jacek Żarski ◽  
Renata Kuśmierek-Tomaszewska ◽  
Stanisław Dudek

In Poland, under conditions of the moderate climate and transition between maritime and continental climates, the average rainfall totals of the growing season are in the range of 350–400 mm; however, they are distinguished by great temporal and spatial variability. Climatological studies demonstrate that the drought frequency is approximately 30%. Therefore, under such conditions, irrigation has a supplementary and intervention nature and is applied only when dry periods occur. The aim of this study was to determine the impact of sprinkler irrigation and increased nitrogen fertilization on the yield and quality of sugar beet roots and yield of sugar. The average increase of the yield under irrigation was 18.1 t·ha−1 which constituted a 22.8% increase in the yield. Furthermore, there was a marked tendency of a higher sugar content in the roots of irrigated plants. The absolute, relative, and unit average sugar beet root yield increases obtained under the influence of sprinkler irrigation and the lack of a significant diversity in the sugar content in roots confirm that irrigation contributed to an appropriate pace of plant growth and development. The increased rate of nitrogen fertilization (N2) of 160 kg N·ha−1 plus an additional 40 kg N·ha−1 resulted in the significantly greater root yields compared to the control (N1) (160 kg N·ha−1), i.e., an average of 7.6 t·ha−1 (9%). Based on the crop-water production function, the maximum root yields were obtained for the N1 rate at a total precipitation and irrigation amount of 382 mm, compared with 367 mm for the N2 rate.


2014 ◽  
pp. 232-240 ◽  
Author(s):  
Philipp Starke ◽  
Christa Hoffmann

Sugar beet is considered as biogas substrate because of its high yield. However, varieties differ in quality, in particular sugar content, which might affect biogas formation. The study aimed at analysing the impact of different beet qualities on biogas formation. Furthermore, parameters describing beet quality for anaerobic digestion should be found. From 2009 to 2011 field trials with several sugar beet varieties and a fodder beet variety were conducted with different N application rates at sites near Göttingen and Regensburg to get a broad range of beet qualities. The dry matter composition of beets, leaves, winter beet, bolters and maize was analysed. Discontinuous batch trials with fresh beet material were conducted to determine biogas formation. Sugar beet varieties did not differ in their dry matter composition and thus in biogas formation, whereas differences occurred between sugar beet and other substrates. Sugar beet was characterised by a high content of organic dry matter (98% oDM). The degradation time was mainly affected by the crude fibre content of the material. Therefore 90% of the biogas from sugar beet was formed within 3.5 days, whereas from winter beet, bolters and maize it took more than 10 days. The calculation of the specific biogas yield of different sugar beet qualities with two formulae resulted in lower values than determined in batch trials. A formula was derived to assess sugar beet quality for anaerobic digestion based on the sugar content, as increasing sugar contents lead to increasing specific biogas yields per kilogramme fresh matter.


2020 ◽  
pp. 554-561
Author(s):  
Christine Kenter ◽  
Philipp Götze ◽  
Erwin Ladewig

In Germany, the guidelines for variety trials with sugar beet require plots with 80–100 beets for a representative estimation of root yield. If possible, one or two head rows shall be planted perpendicular to the plots to avoid border effects at open alleys. The optimum sample size was determined in the 1970s and the effect of head rows has not yet been systematically studied. The aim of the present study was to quantify the effects of sample size and head rows on the precision of yield and quality data of sugar beet. Two series of field trials were carried out in Germany in 2016–2017. In the series “sample size”, conducted at 9 environments, samples of 30, 60, 90 and 120 beets were compared. With increasing number of beets, coefficients of variation and least significant differences for yield and quality parameters decreased, especially when the sample size was increased from 30 to 60 beets. Compared to the current standard of 90 beets, the precision of samples with 60 beets was similar for sugar content but lower for root yield. It is concluded that the current sample size should not be reduced. In the series “head rows”, ten variety trials were conducted without and with head rows. The precision of trials with and without head rows did not differ in general. The effect of head rows on least significant differences for root yield and sugar content was not consistent among environments. With head rows, absolute root yield (tonnes per ha) was lower and sugar content was higher than without, but the rank of varieties in relative white sugar yield remained unchanged. Sugar beet varieties can thus be tested in trials with and without head rows without losing precision, even within the same trial series.


Sign in / Sign up

Export Citation Format

Share Document