scholarly journals Effect of liming on the change of some agrochemical soil properties in a long-term fertilization experiment

2014 ◽  
Vol 60 (No. 4) ◽  
pp. 146-150 ◽  
Author(s):  
I. Jaskulska ◽  
D. Jaskulski ◽  
M. Kobierski

For 10 years (1999&ndash;2008) there was investigated the effect of liming on soil pH<sub>KCl</sub> and on organic carbon, available forms of macroelements and DTPA-extracted forms of some metals in 6 different fertilization objects in a long-term experiment set up in 1948: without fertilization (0), straw + NPK (STR NPK), NPK, farmyard manure (FYM), FYM NPK, FYM NPKMgCa. As a result of the application of 12.0 t/ha of lime (4.3 t Ca/ha), an increase was found not only in soil pH value but also in organic carbon, plant available phosphorus, zinc and copper contents and a decrease in manganese content. Despite significant changes in the soil properties, they still varied across the long-term fertilization objects.

2015 ◽  
Vol 12 (2) ◽  
pp. 34-38 ◽  
Author(s):  
Ashim Kumar Saha ◽  
Apu Biswas ◽  
Abdul Qayyum Khan ◽  
Md. Mohashin Farazi ◽  
Md. Habibur Rahman

Long-term tea cultivation has led to degradation of the soil. Old tea soils require rehabilitation for restoring soil health. Soil rehabilitation by growing different green crops can break the chain of monoculture of tea. An experiment was conducted at The Bangladesh Tea Research Institute (BTRI) Farm during 2008-2011 to find out the efficiency of different green crops on the improvement of soil properties. Four green crops such as Guatemala, Citronella, Mimosa and Calopogonium were grown to develop the nutritional value of the degraded tea soil. Soil samples were collected and analyzed before and at the end of experiment. Soil pH was increased in all four green crops treated plots with the highest increase in Citronella treated plots (from 4.1 to 4.5). Highest content of organic carbon (1.19%) and total nitrogen (0.119%) were found in Mimosa and Calopogonium treated plots, respectively. Concentration of available phosphorus, calcium and magnesium in all green crops treated plots were above the critical values, while available potassium content was above the critical value in Guatemala, Citronella and Mimosa treated plots. Changes in soil pH and available potassium were significant, while changes in organic carbon content, total nitrogen and available calcium were insignificant. Changes in available phosphorus and magnesium were significant. The Agriculturists 2014; 12(2) 34-38


2014 ◽  
Vol 60 (4) ◽  
pp. 142-148
Author(s):  
Lukáš Hlisnikovský ◽  
Eva Kunzová

Abstract Soil is the fundamental element in agriculture and is affected in a variety of ways. Besides other things, the long-term application of mineral and organic fertilisers can significantly influence the topsoil pool of nutrients, organic carbon content and pH. Within the scope of longterm field experiments in Praha-Ruzyně, we evaluated the effect of six fertiliser treatments - unfertilised Control, farmyard manure (FYM), cattle slurry (CAT), cattle slurry amended with straw from previous cereals (CAT+STR), mineral fertiliser (NPK) and NPK amended with FYM (NPK+FYM) on a topsoil pool of nutrient content, organic carbon content (Cox) and pH between the years 2001 and 2012. In the selected period, the fertiliser treatment did not influence the N and Cox content (ranging from 0.126% to 0.143%). Phosphorus and potassium were significantly higher in the NPK+FYM treatment (109.82 and 279.27 mg/kg, respectively), while calcium and magnesium were significantly lower in the NPK treatment (2,973 and 134.95 mg/kg, respectively). Application of mineral fertilisers significantly decreased the value of pH, influencing the Ca and Mg topsoil concentrations. Organic fertilisers cannot provide a sustainable amount of nutrients to generate high yields in a short time, but release their nutrients slowly and the range of nutrients is wider. Mineral fertilisers, if not amended with organic fertilisers, can provide huge doses of nutrients, which can be quickly reused for high yields, but negatively influence the pH value, resulting in a decrease in the pool of Ca and Mg.


2010 ◽  
Vol 58 (Supplement 1) ◽  
pp. 63-68 ◽  
Author(s):  
G. Micskei ◽  
I. Jócsák ◽  
T. Árendás ◽  
P. Bónis ◽  
Z. Berzsenyi

In a long-term experiment on continuous maize set up by Béla Győrffy in 1959, changes in biotic and abiotic environmental factors were studied over time. The long-term effects and stability of the cropping systems, the year effects and the genotype × environment interactions were analysed. The original aim of the experiment was to determine whether the NPK nutrients in farmyard manure could be replaced partially or entirely by inorganic NPK fertiliser. In the present experiment the effect of farmyard manure, mineral fertiliser and the year effect on yield and yield stability were studied for four years (2005–2008). Various levels of farmyard manure and mineral fertiliser induced significant changes in the yield, harvest index, thousand-kernel mass, grain number per ear and grain protein content.


2017 ◽  
Vol 5 (1) ◽  
pp. 42-50
Author(s):  
Nabin Rawal ◽  
Rajan Ghimire ◽  
Devraj Chalise

Balanced nutrient supply is important for the sustainable crop production. We evaluated the effects of nutrient management practices on soil properties and crop yields in rice (Oryza sativa L.) - rice - wheat (Triticum aestivum L.) system in a long-term experiment established at National Wheat Research Program (NWRP), Bhairahawa, Nepal. The experiment was designed as a randomized complete block experiment with nine treatments and three replications. Treatments were applied as: T1- no nutrients added, T2- N added; T3- N and P added; T4- N and K added; T5- NPK added at recommended rate for all crops. Similarly, T6- only N added in rice and NPK in wheat at recommended rate; T7- half N; T8- half NP of recommended rate for both crops; and T9- farmyard manure (FYM) @10 Mg ha-1 for all crops in rotation. Results of the study revealed that rice and wheat yields were significantly greater under FYM than all other treatments. Treatments that did not receive P (T2, T3, T7, T8) and K (T2, T4) had considerably low wheat yield than treatments that received NPK (T5) and FYM (T9). The FYM lowered soil pH and improved soil organic matter (SOM), total nitrogen (TN), available phosphorus (P), and exchangeable potassium (K) contents than other treatments. Management practices that ensure nutrient supply can increase crop yield and improve soil fertility status.Int. J. Appl. Sci. Biotechnol. Vol 5(1): 42-50


2014 ◽  
Vol 44 (4) ◽  
pp. 153
Author(s):  
Elio Dinuccio ◽  
Fabrizio Gioelli ◽  
Dalibor Cuk ◽  
Luca Rollè ◽  
Paolo Balsari

A comparative study was set up in order to assess the technical feasibility of the long-term reuse of the mechanically separated co-digested solid fraction as a feedstock for anaerobic digestion plants (ADP). The biogas yields of two feedstock mixtures (A and B) were assessed in mesophilic conditions (40°C±2°C) using 6 lab-scale continuous stirredtank reactors. Feedstock mixture A (control) consisted of pig slurry (70%), farmyard manure (4%), sorghum silage (12%) and maize silage (14%). Feedstock mixture B was the same as the control plus the solid fraction derived from the mechanical separation of the output raw codigestate collected from the reactors. All reactors were fed simultaneously, three times a week, over a period of nine month. According to the study results, the reuse of the co-digested solid fraction as feedstock for ADP could increase the methane yield by approximately 4%. However, ADP efficiency evaluation (<em>e.g.</em>, daily yield of methane per m<sup>3</sup> of digester) suggests limiting this practice to a maximum time period of 120 days.


Author(s):  
Gintaras JARAŠIŪNAS ◽  
Irena KINDERIENĖ

The objective of this study was to evaluate the impact of different land use systems on soil erosion rates, surface evolution processes and physico-chemical properties on a moraine hilly topography in Lithuania. The soil of the experimental site is Bathihypogleyi – Eutric Albeluvisols (abe–gld–w) whose texture is a sandy loam. After a 27-year use of different land conservation systems, three critical slope segments (slightly eroded, active erosion and accumulation) were formed. Soil physical properties of the soil texture and particle sizes distribution were examined. Chemical properties analysed for were soil ph, available phosphorus (P) and potassium (K), soil organic carbon (SOC) and total nitrogen (N). We estimated the variation in thickness of the soil Ap horizon and soil physico-chemical properties prone to a sustained erosion process. During the study period (2010–2012) water erosion occurred under the grain– grass and grass–grain crop rotations, at rates of 1.38 and 0.11 m3 ha–1 yr–1, respectively. Soil exhumed due to erosion from elevated positions accumulated in the slope bottom. As a result, topographic transfiguration of hills and changes in soil properties occurred. However, the accumulation segments of slopes had significantly higher silt/clay ratios and SOC content. In the active erosion segments a lighter soil texture and lower soil ph were recorded. Only long-term grassland completely stopped soil erosion effects; therefore geomorphologic change and degradation of hills was estimated there as minimal.


2012 ◽  
Vol 92 (3) ◽  
pp. 419-428 ◽  
Author(s):  
X. H. Li ◽  
X. Z. Han ◽  
H. B. Li ◽  
C. Song ◽  
J. Yan ◽  
...  

Li, X. H., Han, X. Z., Li, H. B., Song, C., Yan, J. and Liang, Y. 2012. Soil chemical and biological properties affected by 21-year application of composted manure with chemical fertilizers in a Chinese Mollisol. Can. J. Soil Sci. 92: 419–428. The effects of 21-yr of application of chemical fertilizers, composted pig manure (CPM) alone, and chemical fertilizers combined with compost on soil chemical and biological properties were investigated. Soil samples (0–20cm) were collected from a long-term fertilization experiment under corn (Zea mays L.) production in 2006, prior to seeding, at the corn tasseling stage and following harvest. Fertilizer treatments were: no fertilizer (CK), nitrogen fertilizer alone (N), N + phosphorus (NP), N + P + potassium (NPK), CPM, N + CPM, N + P + CPM (NP + CPM), and N + P + K + CPM (NPK + CPM). Long-term application of N alone resulted in a reduction of soil pH by 0.38 units and reduced the available P concentration compared with CK. An increase in soil pH was seen with CPM alone and NPK + CPM. Both fertilizers sources, singly and combined, increased the total N and available N concentrations. Total P and total K concentrations were greatest with the NPK + CPM treatment. All fertilizer treatments increased the soil organic carbon (SOC), light fraction organic carbon (LFOC) and microbial biomass carbon (MBC) concentrations significantly (P < 0.05) at the tasseling stage. The NPK + CPM treatment showed the greatest increase in SOC (12%), LFOC (78%) and MBC (44%) concentrations, compared with CK. Soil enzyme activities (invertase, urease, acid and alkaline phosphatases) tended to be greater at tasseling than other sampling dates, with highest enzyme activities in the NPK + CPM treatments. These findings suggest that a long-term application of CPM combined with NPK is an efficient strategy to maintain or increase soil quality in Mollisols for sustainable agriculture.


1988 ◽  
Vol 110 (2) ◽  
pp. 337-343 ◽  
Author(s):  
A. L. Singh ◽  
P. K. Singh ◽  
P. L. Singh

SummaryAzolla and blue-green algae (BGA) biofertilizers in rice cultures were compared with farmyard manure (FYM), Azolla and Eichhornia compost, green manuring with Sesbania and chemical nitrogen fertilizer as urea. Growing Azolla crop in rice field once before transplanting and twice after transplanting produced a fresh biomass of Azolla of 46·7–47·6 and 36·4–40·6 t/ha, containing 83·4–92·2 and 64·7–70·4 kg N/ha, with the rice varieties IR-36 and Mahsuri, respectively. The BGA produced only 7·9–8·9 and 5·2–7·2 t fresh biomass/ha, containing 19·5–20·6 and 14·8–19·3 kg N/ha with IR-36 and Mahsuri, respectively.In the 1st year of the experiment application of FYM, Eichhornia and Azolla compost and green manuring of Sesbania produced lower grain and straw yields and panicles than 60 kg N/ha as urea, but during the 2nd year all these treatments showed responses equal to that of 60 kg N/ha as urea. Nitrogen concentration and uptake by rice in these treatments were, however, lower than that of 60 kg N/ha as urea. Growing and incorporating Azolla once before and twice after transplanting produced higher grain and straw yields, and more panicles, and also showed higher nitrogen concentration and uptake by rice than those of organic and green manures. The BGA inoculation to rice with 30 kg N/ha as urea produced less grain and straw, and fewer panicles, and also showed lower nitrogen concentration and uptake by rice than 60 kg N/ha as urea and other organic manures. Of the two rice varieties, IR-36 produced more grain and panicles than Mahsuri, but Mahsuri produced more straw.Total nitrogen, organic carbon and available phosphorus of soil after harvest of the rice increased owing to the application of organic manures, green manures and Azolla and BGA biofertilizers. The green manuring of Sesbania and using Azolla once before and twice after transplanting and FYM showed highest organic carbon and available phosphorus in soil after harvest.


Sign in / Sign up

Export Citation Format

Share Document