scholarly journals Exercise Serum Alters Genes Related Mitochondria in Cardiomyocyte Culture Cell

2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Ronny Lesmana ◽  
Wibowo Budi Prasetyo ◽  
Hamidie Ronald Daniel Ray ◽  
Vita Murniati Tarawan ◽  
Hanna Goenawan ◽  
...  

Exercise-induced hearth muscle adaptation is important for physiological process after exercise. This adaptation will ensure basal mitochondrial homeostasis and as a part of the mitochondria quality control. This process is reflected by equal level of biogenesis stimulation and as well as the selective degradation of old and undesirable mitochondria through fusion or fission cycle and Mitophagy. There is limited information about genetic regulation stimulated by training in cardiomyocytes. We believe there is a specific myokines or protein release in the serum and initiate cardiac muscle adaptation process. In the present study, twelve male wistar rats were appointed to two group: sedentary control and aerobic-intensity (AE, 15m/minute). Rats were trained for running with specific protocol as follows: 30 minutes/day with a 5 times/week interval for 8 weeks. On the last day, serum form control and exercise groups were taken via retro-orbital sinus. Then, 3.105  H9C2 cells (Rat cardiomyocytes cell line)  were cultured and incubated by this serum for 24 hours. After treatment, cell were extracted using trisure for RNA purification and continue with reverse transcriptase PCR. Our data showed that expression of the Pgc-1α, Mfn1, Mfn2, Opa1, Drp1, Pink, and Parkin genes were altered and modulated. Specifically, Mfn1, Mfn2, and Opa1 gene expression levels significantly increased. Interestingly, we did not find significant modulation for  Pgc-1α, Drp1, Pink, and Parkin. Taken together, serum of exercise rats might be contained with myokines or specific protein which was released during training and it altered mitochondrial genes expression in cardiomyocytes culture cell. We believe that myokines release in the serum had a contribution in cardiacmyocyte adaptation.

2011 ◽  
Vol 39 (6) ◽  
pp. 1628-1632 ◽  
Author(s):  
Thomas Gustafsson

Exercise-induced angiogenesis in skeletal muscle involves both non-sprouting and sprouting angiogenesis and results from the integrated responses of multiple systems and stimuli. VEGF-A (vascular endothelial growth factor A) levels are increased in exercised muscle and have been demonstrated to be critical for exercise-induced capillary growth. Only limited information is available regarding the role of other angiogenic and angiostatic factors in exercise, but changes in the angiopoietin family following repetitive bouts of exercise occur in a pattern that is favourable for angiogenesis. Results from other angiogenic model systems, indicate that miRNAs (microRNAs) are important factors in the regulation of angiogenesis and thus to explore their role as regulators of exercise induced angiogenesis will be an important avenue of study in the future. ECM (extracellular matrix) remodelling and activation of MMPs (matrix metalloproteinases) are, to some extent, overlooked players in skeletal muscle adaptation. Degradation of ECM proteins liberates angiogenic factors from immobilized matrix stores and make cell migration possible. In fact, it is known that MMPs become activated by a single bout of exercise in humans, rapid interstitial changes occur long before any changes in gene transcription could result in protein synthesis and inhibition of MMP activity completely abolishes sprouting angiogenesis. A growing body of evidence suggests that circulating and resident progenitor cells, in addition to other cell types located in skeletal muscle tissue, participate in skeletal muscle angiogenesis by various mechanisms. However, more studies are needed before these can be confirmed as mechanisms of exercise-induced capillary growth.


2006 ◽  
Vol 76 (5) ◽  
pp. 324-331 ◽  
Author(s):  
Marsh ◽  
Laursen ◽  
Coombes

Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation (α-lipoic acid and α-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also had no effect (p > 0.05). GPX (125.9 ± 2.8 vs. 121.5 ± 3.0 U.gHb–1, p < 0.05) and CAT (6.1 ± 0.2 vs. 5.6 ± 0.2 U.mgHb–1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 ± 4.3 vs. 52.0 ± 5.2 U.mgHb–1, p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.


Author(s):  
Masoud Nasiri ◽  
Saja Ahmadizad ◽  
Mehdi Hedayati ◽  
Tayebe Zarekar ◽  
Mehdi Seydyousefi ◽  
...  

Abstract. Physical exercise increases free radicals production; antioxidant supplementation may improve the muscle fiber’s ability to scavenge ROS and protect muscles against exercise-induced oxidative damage. This study was designed to examine the effects of all-trans resveratrol supplementation as an antioxidant to mediate anti-oxidation and lipid per-oxidation responses to exercise in male Wistar rats. Sixty-four male Wistar rats were randomly divided into four equal number (n = 16) including training + supplement (TS), training (T), supplement (S) and control (C) group. The rats in TS and S groups received a dose of 10 mg/kg resveratrol per day via gavage. The training groups ran on a rodent treadmill 5 times per week at the speed of 10 m/min for 10 min; the speed gradually increased to 30 m/min for 60 minutes at the end of 12th week. The acute phase of exercise protocol included a speed of 25 m/min set to an inclination of 10° to the exhaustion point. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activity, non-enzymatic antioxidants bilirubin, uric acid, lipid peroxidation levels (MDA) and the total antioxidant capacity (TAC) were measured after the exercise termination. The data were analyzed by using one-way ANOVA. The result showed that endurance training caused a significant increase in MDA level [4.5 ± 0.75 (C group) vs. 5.9 ± 0.41 nmol/l (T group)] whereas it decreased the total antioxidant capacity [8.5 ± 1.35 (C group) vs. 7.1 ± 0.55 mmol/l (T group)] (p = 0.001). In addition, GPx and CAT decreased but not significantly (p > 0.05). The training and t-resveratrol supplementation had no significant effect on the acute response of all variables except MDA [4.3 ± 1.4 (C group) vs. 4.0 ± 0.90 nmol/l (TS group)] (p = 0.001) and TAC [8.5 ± 0.90 (C group) vs. 6.6 ± 0.80 mmol/l (TS group)] (p = 0.004). It was concluded that resveratrol supplementation may prevent exercise-induced oxidative stress by preventing lipid peroxidation.


2019 ◽  
Vol 70 (6) ◽  
pp. 1983-1987
Author(s):  
Cristian Trambitas ◽  
Anca Maria Pop ◽  
Alina Dia Trambitas Miron ◽  
Dorin Constantin Dorobantu ◽  
Flaviu Tabaran ◽  
...  

Large bone defects are a medical concern as these are often unable to heal spontaneously, based on the host bone repair mechanisms. In their treatment, bone tissue engineering techniques represent a promising approach by providing a guide for osseous regeneration. As bioactive glasses proved to have osteoconductive and osteoinductive properties, the aim of our study was to evaluate by histologic examination, the differences in the healing of critical-sized calvarial bone defects filled with bioactive glass combined with adipose-derived mesenchymal stem cells, compared to negative controls. We used 16 male Wistar rats subjected to a specific protocol based on which 2 calvarial bone defects were created in each animal, one was filled with Bon Alive S53P4 bioactive glass and adipose-derived stem cells and the other one was considered control. At intervals of one week during the following month, the animals were euthanized and the specimens from bone defects were histologically examined and compared. The results showed that this biomaterial was biocompatible and the first signs of osseous healing appeared in the third week. Bone Alive S53P4 bioactive glass could be an excellent bone substitute, reducing the need of bone grafts.


1997 ◽  
Vol 61 (1) ◽  
pp. 17-32
Author(s):  
G A Marzluf

In the fungi, nitrogen metabolism is controlled by a complex genetic regulatory circuit which ensures the preferential use of primary nitrogen sources and also confers the ability to use many different secondary nitrogen sources when appropriate. Most structural genes encoding nitrogen catabolic enzymes are subject to nitrogen catabolite repression, mediated by positive-acting transcription factors of the GATA family of proteins. However, certain GATA family members, such as the yeast DAL80 factor, act negatively to repress gene expression. Selective expression of the genes which encode enzymes for the metabolism of secondary nitrogen sources is often achieved by induction, mediated by pathway-specific factors, many of which have a GAL4-like C6/Zn2 DNA binding domain. Regulation within the nitrogen circuit also involves specific protein-protein interactions, as exemplified by the specific binding of the negative-acting NMR protein with the positive-acting NIT2 protein of Neurospora crassa. Nitrogen metabolic regulation appears to play a significant role in the pathogenicity of certain animal and plant fungal pathogens.


1989 ◽  
Vol 66 (6) ◽  
pp. 2857-2865 ◽  
Author(s):  
F. M. Peeze Binkhorst ◽  
H. Kuipers ◽  
J. Heymans ◽  
P. M. Frederik ◽  
D. W. Slaaf ◽  
...  

The relationship between exercise-induced focal muscle fiber degeneration and changes in capillary morphology was investigated in male Wistar rats. Untrained animals ran on a treadmill for 1 h at submaximal intensity and were killed 0, 6, or 24 h after running. Nonexercised rats served as controls. In situ perfused soleus muscles were prepared for electron microscopy. Micrographed cross sections were quantitatively analyzed for parameters indicative of capillary blood flow or transcapillary exchange. Capillary lumina were ovally rather than circularly shaped, and no indications for obstruction of blood flow at the capillary level were found. Endothelial cells and their organelles had a normal appearance in all groups. However, immediately after exercise, capillaries showed a decreased thickness of their endothelium and basal membrane, probably caused by dehydration. Six hours after exercise, muscle fibers were swollen (28% increase in cross-sectional area), resulting in a slightly increased diffusion distance. This fiber swelling was not associated with an increase in muscle water content, a finding for which no explanation could be found. Twenty-four hours after the animals ran, capillaries located near degenerated muscle fibers had an increased cross-sectional luminal area and an increased luminal circumference. This effect decreased gradually with increasing distance from the degenerated fiber area. The present morphometric results do not support the hypothesis that changes in capillary morphology primarily contribute to exercise-induced focal muscle fiber degeneration.


2020 ◽  
Vol 21 (22) ◽  
pp. 8640
Author(s):  
Kijeong Lee ◽  
Mi-Ryung Han ◽  
Ji Woo Yeon ◽  
Byoungjae Kim ◽  
Tae Hoon Kim

Dendritic cells (DCs) play critical roles in atopic diseases, orchestrating both innate and adaptive immune systems. Nevertheless, limited information is available regarding the mechanism through which DCs induce hyperresponsiveness in patients with allergies. This study aims to reveal novel genetic alterations and future therapeutic target molecules in the DCs from patients with allergies using whole transcriptome sequencing. Transcriptome sequencing of human BDCA-3+/CD11c+ DCs sorted from peripheral blood monocytes obtained from six patients with allergies and four healthy controls was conducted. Gene expression profile data were analyzed, and an ingenuity pathway analysis was performed. A total of 1638 differentially expressed genes were identified at p-values < 0.05, with 11 genes showing a log2-fold change ≥1.5. The top gene network was associated with cell death/survival and organismal injury/abnormality. In validation experiments, amphiregulin (AREG) showed consistent results with transcriptome sequencing data, with increased mRNA expression in THP-1-derived DCs after Der p 1 stimulation and higher protein expression in myeloid DCs obtained from patients with allergies. This study suggests an alteration in the expression of DCs in patients with allergies, proposing related altered functions and intracellular mechanisms. Notably, AREG might play a crucial role in DCs by inducing the Th2 immune response.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Damian Jozef Flis ◽  
Robert Antoni Olek ◽  
Jan Jacek Kaczor ◽  
Ewa Rodziewicz ◽  
Malgorzata Halon ◽  
...  

The reduction in cholesterol in mitochondria, observed after exercise, is related to the inhibition of mitochondrial swelling. Caveolin-1 (Cav-1) plays an essential role in the regulation of cellular cholesterol metabolism and is required by various signalling pathways. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the mitochondrial Cav-1 concentration; additionally, we identified the results of these changes as they relate to the induction of changes in the mitochondrial swelling and cholesterol in rat skeletal muscle and liver. Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their quadriceps femoris muscles and livers were immediately removed for experimentation. The exercise protocol caused an increase in the Cav-1 concentration in crude muscle mitochondria; this was related to a reduction in the cholesterol level and an inhibition of mitochondrial swelling. There were no changes in rat livers, with the exception of increased markers of oxidative stress in mitochondria. These data indicate the possible role of Cav-1 in the adaptive change in the rat muscle mitochondria following exercise.


2009 ◽  
Vol 19 (5) ◽  
pp. 473-484 ◽  
Author(s):  
Abbass Ghanbari-Niaki ◽  
Rozita Fathi ◽  
Sayed Alireza Hossaini Kakhak ◽  
Zhara Farshidi ◽  
Sara Barmaki ◽  
...  

Agouti-related protein (AGRP) is an orexigenic peptide secreted from the arcuate nucleus (ARC) of the hypothalamus. AGRP increases food intake and plays a role in energy balance, adiposity, weight gain, and growth-hormone release. The objective of the current study was to examine the effects of running exercise on resting hepatic, fundus, and pancreas AGRP mRNA expression, as well as liver glycogen and ATP contents, using a rat model. Twenty adult male Wistar rats (12–14 wk old, 200–220 g) were randomly assigned to control (n = 10) and training (n = 10) groups. The training group was exercised for 8 wk on a motor-driven treadmill (26 m/min, 0% grade, 60 min, 5 d/wk). Twenty-four hours before sacrifice the rats were further divided into fed control (FEC), fed trained (FET), fasted control (FAC), and fasted trained (FAT) groups. The liver, fundus, and pancreas were excised and frozen in liquid nitrogen for later analysis. Results demonstrated that 8 wk of treadmill exercise reduced hepatic but not fundus and pancreatic AGRP expression and enhanced glycogen and ATP concentrations (p < .001) in trained-rat liver, whereas fasting lowered liver glycogen and ATP levels and increased hepatic AGRP mRNA expression in nonexercising controls. Data indicate that both treadmill-exercise-induced decrease and fast-induced increase in rat liver AGRP expression might depend on liver glycogen content as an important source for energy provision.


2015 ◽  
Vol 119 (3) ◽  
pp. 172-189 ◽  
Author(s):  
Jonathan M. Peake ◽  
James F. Markworth ◽  
Kazunori Nosaka ◽  
Truls Raastad ◽  
Glenn D. Wadley ◽  
...  

Hormesis encompasses the notion that low levels of stress stimulate or upregulate existing cellular and molecular pathways that improve the capacity of cells and organisms to withstand greater stress. This notion underlies much of what we know about how exercise conditions the body and induces long-term adaptations. During exercise, the body is exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and mechanical stress. These stressors activate biochemical messengers, which in turn activate various signaling pathways that regulate gene expression and adaptive responses. Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress and inflammation. However, reactive oxygen species and inflammatory mediators are key signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. Conversely, withholding dietary carbohydrate and restricting muscle blood flow during exercise may augment adaptations to exercise. In this review article, we combine, integrate, and apply knowledge about the fundamental mechanisms of exercise adaptation. We also critically evaluate the rationale for using interventions that target these mechanisms under the overarching concept of hormesis. There is currently insufficient evidence to establish whether these treatments exert dose-dependent effects on muscle adaptation. However, there appears to be some dissociation between the biochemical/molecular effects and functional/performance outcomes of some of these treatments. Although several of these treatments influence common kinases, transcription factors, and proteins, it remains to be determined if these interventions complement or negate each other, and whether such effects are strong enough to influence adaptations to exercise.


Sign in / Sign up

Export Citation Format

Share Document