scholarly journals Vancomycin Loaded Alginate/Cockle Shell Powder Nanobiocomposite Bone Scaffold for Antibacterial and Drug Release Evaluation

2021 ◽  
Vol 50 (8) ◽  
pp. 2309-2318
Author(s):  
Su Wen Yuan ◽  
Jacinta Santhanam ◽  
Shiow Fern Ng ◽  
B. Hemabarathy Bharatham

Bacterial infection and biofilm formation is a major concern in orthopaedic implants and bone reconstructive surgery complications that may be addressed with localized drug delivery system. The potential use of a fabricated nanobiocomposite bone scaffold using alginate and nano cockle shell powder for drug release and antibacterial properties was investigated. Vancomycin loaded bone scaffolds were fabricated with 3 and 5 wt% vancomycin, respectively, while a non-drug loaded scaffold was used as controls. The mineralization of the scaffolds using simulated body fluid (SBF) as well as biofilm formation were evaluated using microscopic observations. Drug release study and antimicrobial activity of the eluent from each sampling period was tested for growth inhibition of Staphylococcus aureus and Staphylococcus epidermidis for a period of 21 days. Significant difference of cumulative amount of vancomycin eluted from scaffolds loaded with 5 wt% vancomycin compared to 3 wt% (p<0.05) were noted. Eluent from both groups showed inhibitory effect against bacterial strain tested for 21 days. The findings are further supported with histological observations of reduced biofilm formation by Staphylococcus epidermidis on surface of 5 wt% vancomycin loaded scaffolds compared to control scaffolds. Basic mineralization studies conducted showed no alteration in drug loaded scaffolds characteristics compared to control scaffolds. Findings from this study indicates antibacterial properties can be conferred to the fabricated bone scaffold with successful incorporation of vancomycin with potentials to be used for local drug delivery application.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 487 ◽  
Author(s):  
Preem ◽  
Bock ◽  
Hinnu ◽  
Putrinš ◽  
Sagor ◽  
...  

New strategies are continuously sought for the treatment of skin and wound infections due to increased problems with non-healing wounds. Electrospun nanofiber mats with antibacterial agents as drug delivery systems provide opportunities for the eradication of bacterial infections as well as wound healing. Antibacterial activities of such mats are directly linked with their drug release behavior. Traditional pharmacopoeial drug release testing settings are not always suitable for analyzing the release behavior of fiber mats intended for the local drug delivery. We tested and compared different drug release model systems for the previously characterized electrospun chloramphenicol (CAM)-loaded nanofiber (polycaprolactone (PCL)) and microfiber (PCL in combination with polyethylene oxide) mats with different drug release profiles. Drug release into buffer solution and hydrogel was investigated and drug concentration was determined using either high-performance liquid chromatography, ultraviolet-visible spectrophotometry, or ultraviolet (UV) imaging. The CAM release and its antibacterial effects in disc diffusion assay were assessed by bacterial bioreporters. All tested model systems enabled to study the drug release from electrospun mats. It was found that the release into buffer solution showed larger differences in the drug release rate between differently designed mats compared to the hydrogel release tests. The UV imaging method provided an insight into the interactions with an agarose hydrogel mimicking wound tissue, thus giving us information about early drug release from the mat. Bacterial bioreporters showed clear correlations between the drug release into gel and antibacterial activity of the electrospun CAM-loaded mats.


Biofilms ◽  
2004 ◽  
Vol 1 (2) ◽  
pp. 123-130 ◽  
Author(s):  
R. L. Sammons ◽  
D. Kaur ◽  
P. Neal

The aim of this study was to investigate bacterial survival and biofilm formation on toothbrushes. Fifteen healthy volunteers each used a normal toothbrush and an antibacterial toothbrush of the same design for two separate 5 week periods. Bacteria were removed from the brush head by swabbing and mechanical agitation in 10ml of tryptone soya broth, cultured aerobically on selective and non-selective media, and classified by Gram staining, catalase and oxidase tests. Survival of Staphylococcus epidermidis and Pseudomonas aeruginosa was monitored in the laboratory on both types of brush over 8 days. Scanning electron microscopy was used to observe biofilm formation on antibacterial and conventional brushes used for various times. Numbers of bacteria isolated from conventional and antibacterial brushes from different individuals ranged from 8.3×103 to 4.7×106 and from 1×102 to 1.2×106 colony-forming units/ml, respectively. A larger number of bacteria were isolated from conventional brushes than from antibacterial brushes used by the same individuals but no statistically significant difference was demonstrated. No differences in the relative proportions of Gram-negative and Gram-positive rods or cocci were seen. Staphylococci, presumptive coliforms and pseudomonads were isolated from 48%, 28% and 16% of brushes, respectively. Pseudomonas aeruginosa was viable for at least 4 days on conventional, and 2–3 days on antibacterial, brushes, whilst S. epidermidis survived for 6–8 days on antibacterial and more than 8 days on conventional brushes. Biofilms formed on the heads and bristles of both conventional and antibacterial brushes. Extensive, mixed community biofilms developed after several months of use. We conclude that toothbrushes may be a reservoir of opportunistic pathogens including staphylococci and pseudomonad-like organisms and must be considered as a potential source of haematogenous infections and cross-infection.


2020 ◽  
Vol 10 (4) ◽  
pp. 518-533 ◽  
Author(s):  
Kehinde M. Ibiyeye ◽  
Abu B.Z. Zuki ◽  
Norshariza Nurdin ◽  
Mokrish Ajat

Background: Cockleshell-derived aragonite calcium carbonate nanoparticles were prepared by the top-down approach for combine delivery of two types of drugs. Objective: The aim of this study was to synthesize and characterize thymoquinone-doxorubicin loaded cockle shell-derived aragonite calcium carbonate nanoparticle. Aragonite calcium carbonate nanoparticles encapsulating thymoquinone and doxorubicin alone were also prepared. Methods: The blank and drug-loaded nanoparticles were characterized by field emission scanning electron microscopy, transmission electron microscopy, Zeta potential, Fourier transformed infrared and X-ray diffraction. Drug delivery properties, in vitro drug release study at pH 7.4, 6 and 4.8, and effect of blank nanoparticles on MCF10A, 3T3, MDA MB231 cells were also analyzed. Results: The blank and drug-loaded nanoparticles were pleomorphic and their sizes varying from 53.65 ± 10.29 nm to 60.49 ± 11.36 nm with an overall negative charge. The entrapment efficiency of thymoquinone and doxorubicin were 41.6 and 95.8, respectively. The FTIR showed little alteration after loading thymoquinone and doxorubicin while XRD patterns revealed no changes in the crystallizations of nanoparticles after drug loading. The drug release kinetics of doxorubicin and thymoquinone from the nanoparticles showed a continuous and gradual release after an initial burst release was observed. At pH 4.8, about 100% of drug release was noticed, 70% at pH 6 while only 50% at pH 7.4. The cell viability was 80% at a concentration of 1000 ug/ml of blank nanoparticle. Conclusion: The cockle shell-derived pH sensitive aragonite calcium carbonate nanoparticle provides an effective and simple means of multiple drug delivery and function as a platform for pH controlled release of loaded therapeutic agents.


2021 ◽  
pp. 11-14
Author(s):  
Kranthi Kosuru ◽  
Abhishek Reddy ◽  
Vinuthna Vinuthna ◽  
V.Shakuntala Soujanya ◽  
Durgakeerthi. P

Context: Non surgical periodontal therapy is the gold standard treatment for periodontitis. But the invasive nature of subgingival microorganisms makes the use of antimicrobials inevitable. These antimicrobials can be used systemically and locally. Due the side effects posed by systemic administration of antibiotics local drug delivery is more favourable. Various local drug delivery agents are commercially available for periodontal therapy. Studies have shown that azithromycin is effective against periodontal pathogens so, it can be used in periodontitis treatment. But the use of azithromycin as local drug delivery agent is rare. Aims: The present study aims at formulation of 0.5% azithromycin gel as local drug delivery agent for periodontal therapy with PLGA as vehicle and invitro drug release evaluation in articial saliva. Settings and Design: Formulation of 0.5%azithromycin was done and articial saliva prepared. Azithromycin gel was placed in a dialysis tube. The dialysis tube was then placed in a beaker containing 100ml of articial Saliva. A total of eight samples were collected for a period of seven days. The amount of drug release was estimated using HPLC. Results: The results showed that the concentration of azithromycin in samples collected was greater than the minimum inhibitory concentration of most the periodontal pathogens. Conclusions:The formulation of 0.5% azithromycin can be used as local drug delivery agent adjunct to scaling and root planning.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
B. Hemabarathy Bharatham ◽  
Md. Zuki Abu Bakar ◽  
Enoch Kumar Perimal ◽  
Loqman Mohamed Yusof ◽  
Muhajir Hamid

A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminaryin vitrostudies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.


2013 ◽  
Vol 17 (4) ◽  
pp. 429 ◽  
Author(s):  
Ranganathan Vijayalashmi ◽  
SabithaManhalore Ravindranath ◽  
NadathurDoraiswamy Jayakumar ◽  
Padmalatha ◽  
SheejaH Vargheese ◽  
...  

2019 ◽  
Vol 25 (34) ◽  
pp. 3692-3701 ◽  
Author(s):  
Hanif Ullah ◽  
Munair Badshah ◽  
Alexandra Correia ◽  
Fazli Wahid ◽  
Hélder A. Santos ◽  
...  

Background: Bacterial cellulose (BC) has recently attained greater interest in various research fields, including drug delivery for biomedical applications. BC has been studied in the field of drug delivery, such as tablet coating, controlled release systems and prodrug design. Objective: In the current work, we tested the feasibility of BC as a drug carrier in microparticulate form for potential pharmaceutical and biomedical applications. Method : For this purpose, drug-loaded BC microparticles were prepared by simple grinding and injection moulding method through regeneration. Model drugs, i.e., cloxacillin (CLX) and cefuroxime (CEF) sodium salts were loaded in these microparticles to assess their drug loading and release properties. The prepared microparticles were evaluated in terms of particle shapes, drug loading efficiency, physical state of the loaded drug, drug release behaviour and antibacterial properties. Results: The BC microparticles were converted to partially amorphous state after regeneration. Moreover, the loaded drug was transformed into the amorphous state. The results of scanning electron microscopy (SEM) showed that microparticles had almost spherical shape with a size of ca. 350-400 μm. The microparticles treated with higher drug concentration (3%) exhibited higher drug loading. Keeping drug concertation constant, i.e., 1%, the regenerated BC (RBC) microparticles showed higher drug loading (i.e., 37.57±0.22% for CEF and 33.36±3.03% for CLX) as compared to as-synthesized BC (ABC) microparticles (i.e., 9.46±1.30% for CEF and 9.84±1.26% for CLX). All formulations showed immediate drug release, wherein more than 85% drug was released in the initial 30 min. Moreover, such microparticles exhibited good antibacterial activity with larger zones of inhibition for drug loaded RBC microparticles as compared to corresponding ABC microparticles. Conclusion : Drug loaded BC microparticles with immediate release behaviour and antibacterial activity were fabricated. Such functionalized microparticles may find potential biomedical and pharmaceutical applications.


2011 ◽  
Vol 222 ◽  
pp. 289-292 ◽  
Author(s):  
Dagnija Loca ◽  
Janis Locs ◽  
Juris Gulbis ◽  
Ilze Salma ◽  
Liga Berzina-Cimdina

Local drug delivery devices especially based on osteoconductive porous calcium phosphate ceramics are of clinical importance. However, the brittleness, pore structure, porosity and pore size should be controlled for their wider applications in hard tissue implants and load bearing compartments. An approach to the fabrication of the bone graft exhibiting bone regeneration function as well as the local drug delivery was made. Hydroxyapatite (HAp)/β-tricalcium phosphate (β-TCP) porous scaffolds were prepared and mechanical properties (compression strength 20MPa), porosity (>50%), pore size (60-350µm) and structure as well as interconnectivity of pores were investigated. Porous scaffolds were impregnated with 4-5 mg of lidocaine hydrochloride (LidHCl) and drug release rate was evaluated and compared for scaffolds with and without poly lactic acid (PLA), poly(-caprolactone) (PCL) and polyvinyl alcohol (PVA) coatings. From in vitro dissolution tests it was seen that biopolymer coatings sustained the drug release up to 12h.


Sign in / Sign up

Export Citation Format

Share Document