scholarly journals Test “Dissolution” as an integral part of quality complex evaluation of capsules with sekoisolariciresinol

2019 ◽  
Vol 18 (1) ◽  
pp. 95-100
Author(s):  
Е. V. Ignаtieva ◽  
Z. S. Shprakh ◽  
I. V. Yartseva ◽  
E. V. Sanarova

Background . Test “Dissolution” is one of the main methods for quality evaluation of solid dosage drug forms, which enables characterization of the drug both in technological and biopharmacological aspects. The test may be also used for comparative studies of drugs bioavailability in vitro. Objective . Development of the “Dissolution” test for the drug Secoisolariciresinol, capsules 100 mg.Materials and methods . The study used: Secoisolariciresinol, capsules 100 mg; hydrochloric acid (c. p.); Twin-80 (Polysorbate LAUROPAN T/80, Italy); purified water (рН 6.5); 0.1 М and 0.2 М solutions of hydrochloric acid; phosphate buffer solution (рН 6.8). Equipment and devices: dissolution tester ERWEKA, series 700, type – paddle mixer (ERWEKA, Germany); recording spectrophotometer Cary-100 (Varian, USA); рН-meter HANNA рН 211 (Hanna Instruments, Germany); analytical balances Sartorius 2405 (Sartorius AG, Germany).Results . Methodology for performing the “Dissolution” test for the drug Secoisolariciresinol, capsules 100 mg was developed according to Russian State Pharmacopoeia (XIV) requirements for solid dosage drug forms.Conclusions . Optimal conditions were chosen for performing the study “Dissolution” for capsules containing 100 mg of secoisolariciresinol. Analytical methodology was designed for quantitative assessment of secoisolariciresinol release from capsules, which enables accurate control of pharmaceutical substance content in different dissolution media. Methodology for the “Dissolution” test of the drug Secoisolariciresinol, capsules 100 mg was developed on the base of the obtained experimental data.

Pharmacia ◽  
2022 ◽  
Vol 69 (1) ◽  
pp. 61-67
Author(s):  
Nataliia Shulyak ◽  
Kateryna Liushuk ◽  
Oksana Semeniuk ◽  
Nadiya Yarema ◽  
Tetyana Uglyar ◽  
...  

Atorvastatin and lisinopril are a successful combination for the treatment of patients with chronic heart failure and hypertension. Study of the dissolution kinetics of drugs in solid dosage form with lisinopril and atorvastatin and intestinal permeability to assess their equivalence in vitro were described. In medium with hydrochloric acid pH 1.2, in the medium of acetate buffer solution with a pH of 4.5 and in the medium phosphate buffer solution with a pH of 6.8 for 15 min more than 85% of the active substance passes into solution, hence the dissolution profiles these drugs in these environments are similar, and the drugs in them are “very quickly soluble”. Among the in vitro models that make it possible to assess the degree of absorption of API, the most widely used culture of adenocarcinoma cells of the colon – Caco-2. The development of the analytical methodology and its validation is the final stage of both the dissolution study and the Caco-2 test, as well as the biowaver procedure. It plays the most important role in the reliability of the results for all the above procedures and tests. To study permeability, method LC-MS/MS was developed. According to the obtained results, atorvastatin and lisinopril showed low permeability. The values ​​of recovery of transport of test and control substances through the monolayer of cells of the Caco-2 line indicate that the results of the experiment can be considered reliable. The equivalence of the drugs “Lisinopril”, tablets of 10 mg and “Atorvastatin”, tablets of 10 mg, belongs to class III BCS proven by in vitro studies.


1983 ◽  
Vol 29 (9) ◽  
pp. 1104-1109 ◽  
Author(s):  
D. K. Arora ◽  
A. B. Filonow ◽  
J. L. Lockwood

Erwinia herbicola, Pseudomonas fluorescens, and P. putida were strongly attracted in vitro to substances exuded by conidia of Cochliobolus victoriae and sclerotia of Macrophomina phaseolina, but not to phosphate buffer solution. Numbers of bacteria attracted to propagules of C. victoriae or M. phaseolina in an unsterilized sandy loam soil were significantly (P = 0.05) greater than background populations occurring in soil saturated with buffer. Chemotactic response was greater to C. victoriae than to M. phaseolina both in vitro and in soil. Results suggest that living fungal propagules may act as attractants for motile bacteria in soil.


2008 ◽  
Vol 47-50 ◽  
pp. 1302-1306 ◽  
Author(s):  
John A. Nychka ◽  
Ding Li

We report our observations concerning the time evolution of surface morphology occurring during the in vitro immersion of bioactive glass surfaces in contact with phosphate buffer solution. We compare regions under intentionally produced residual stresses via micro-indentation to those where no indentation was performed. The sign of the residual stress is shown to be important for predicting dissolution behaviour; compression retards dissolution, whereas tension enhances dissolution. We analyze our results with a simple model for the work of bond dissociation. We report that a highly constrained residual compressive stress state, such as in an indent, leads to a work deficit in comparison to tension, which accounts for the slower dissolution rate of compressed bioactive glass. Such a mechanochemical effect suggests that the presence of residual stresses from the manufacture of biomedical implants and devices could lead to accelerated or delayed dissolution and that careful control of residual stresses should be sought for predictable performance in dissolvable materials.


2014 ◽  
Vol 69 (5) ◽  
Author(s):  
Shafiyah Pondi ◽  
Jon Efendi ◽  
Ho Chin Siong ◽  
Lai Sin Yuan ◽  
Sheela Chandren ◽  
...  

The drug-delivery field has been an attractive as well as challenging area for research. With the emerging of new formulated drugs and pharmaceutical compounds, development of good drug-delivery system (DDS) is crucially required. This study aims to utilize albumin as the drug template in silica/albumin/drug (S/A/D) system. Prior to designing this system, the interaction between silica and albumin was investigated. It is hypothesized that high interaction between silica and albumin may result in slower drug release over time, which is preferred for a good DDS. Silica and albumin (S/A) materials were prepared by using fumed silica and tetraethyl orthosilicate (TEOS) as the silica precursors. Three different S/A samples were prepared; fumed silica with albumin (FS/A), fumed silica with pre-treated albumin by sodium borohydrate (FS/A-N), and silica sol (TEOS) with albumin (SS/A). In-vitro release of albumin in phosphate buffer solution (pH 7) was carried out to examine the interaction between albumin and silica. The concentration of albumin was detected at 280 nm by UV-visible spectrophotometer. All samples were characterized by diffuse reflectance-UV-visible spectrophotometer (DR-UV), Fourier transform infrared spectrophotometer (FTIR) dan thermogravimetric-differential thermal analysis (TG-DTA). DR-UV results show that SS/A exhibited the lowest absorption intensity at 280 nm, which indicates better interaction between silica and albumin. This result was supported by the presence of Si-O stretching band of silanol at 952 cm-1 from the FTIR spectrum. Release study of albumin demonstrated that the release of albumin from SS/A was slowest compared to those of FS/A and FS/A-N. 


e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Chunxue Zhang ◽  
Xiaoyan Yuan ◽  
Lili Wu ◽  
Jing Sheng

AbstractSubmicron poly(vinyl alcohol) (PVA) fibre mats embedded with Aspirin and bovine serum albumin (BSA) were prepared by electrospinning of their aqueous solutions. Fibre morphology was investigated by scanning electron microscopy. The composition of the fibre mats was characterized by Fourier transform IR spectroscopy and X-ray photoelectron spectroscopy. The in vitro drug release was investigated by immersing the fibre mats in phosphate buffer solution at 37°C. Results indicated that the morphology of fibre mats was influenced by the amount of drug, and more beaded and irregularly shaped fibres were found with increasing drug amounts. There were drug molecules distributed on the surface of the PVA fibres. Studies of in vitro drug release showed that both Aspirin and BSA were released more quickly from PVA fibre mats than from PVA films because of the large surface area and high porosity of the fibre mats.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 826 ◽  
Author(s):  
Jayasingh Anita Lett ◽  
Suresh Sagadevan ◽  
Joseph Joyce Prabhakar ◽  
Nor Aliya Hamizi ◽  
Irfan Anjum Badruddin ◽  
...  

Infections after bone reconstructive surgery become an authentic therapeutic and economic issue when it comes to a modern health care system. In general; infected bone defects are regarded as contraindications for bone grafting. Since the pathogens develop a biofilm on the inner surface of the bone; local delivery of antibiotics becomes more important. The present work focuses on the synthesis of Mesoporous Hydroxyapatite (MPHAP) loaded with drug Vancomycin (Van) and to investigate its loading and leaching ability in phosphate buffer solution (PBS), to be used for post-operative infections. The effect of pore size on MPHAP was analyzed using different fatty acids as organic modifiers. The impacts of various fatty acids chain length on the morphology and pore size were studied. A simple impregnation technique with optimized conditions ensured a high antibiotic loading (up to 0.476 + 0.0135 mg/mL), with a complete in vitro release obtained within 50 h.


2010 ◽  
Vol 660-661 ◽  
pp. 617-622 ◽  
Author(s):  
Rogério Albuquerque Marques ◽  
Adonis M. Saliba-Silva ◽  
Sizue Ota Rogero ◽  
Maria de Fátima Montemor ◽  
Isolda Costa

- Ferromagnetic stainless steels (SS) produced by powder metallurgy (PM) techniques have been investigated as potential candidates for dental prosthesis applications in replacement of magnetic attachments made of noble and expensive alloys. Two SS were investigated: SS 17-4 PH produced by powder injection (PIM) and SS PM2000 obtained by mechanical alloying. In vitro cytotoxicity analysis of the two SS showed no cytotoxic effects. The magnetic retention force of both tested SS was also evaluated and they were comparable to noble commercially available material that is in use at the moment. The corrosion resistance of both SS was evaluated by electrochemical techniques in sodium phosphate buffer solution (PBS) at 37°C. The AISI 316L SS was also tested under the same conditions for comparison reasons. SS samples tested showed passive behaviour in the electrolyte, but they also presented susceptibility to pitting. The best pitting resistance was associated to the PM2000 whereas the 17-4PH PIM showed the highest pitting susceptibility among the tested steels. The results pointed out that the PM2000 SS might be considered a potential candidate for substitution of high cost magnetic alloys used in dental prosthesis.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1624
Author(s):  
Lili Qin ◽  
Xinyu Zhao ◽  
Yiwei He ◽  
Hongqiang Wang ◽  
Hanjing Wei ◽  
...  

Resveratrol is a natural active ingredient found in plants, which is a polyphenolic compound and has a variety of pharmaceutical uses. Resveratrol-loaded TEMPO-oxidized cellulose aerogel (RLTA) was prepared using a freeze-drying method, employing high speed homogenization followed by rapid freezing with liquid nitrogen. RLTAs were designed at varying drug–cellulose aerogel ratios (1:2, 2:3, 3:2, and 2:1). It could be seen via scanning electron microscopy (SEM) that Res integrated into TEMPO-oxidized cellulose (TC) at different ratios, which changed its aggregation state and turned it into a short rod-like structure. Fourier transform infrared (FTIR) spectra confirmed that the RLTAs had the characteristic peaks of TC and Res. In addition, X-ray diffraction (XRD) demonstrated that the grain size of RLTA was obviously smaller than that of pure Res. RLTAs also had excellent stability in both simulated gastric fluid and phosphate buffer solution. The drug release rate was initially completed within 5 h under a loading rate of 30.7 wt%. The results of an MTT assay showed the low toxicity and good biocompatibility of the RLTAs. TC aerogel could be a promising drug carrier that may be widely used in designing and preparing novel biomedicine.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 786 ◽  
Author(s):  
Oscar Gil-Castell ◽  
José David Badia ◽  
Jordi Bou ◽  
Amparo Ribes-Greus

The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 °C. The scaffolds for short-time applications were PLGA and PDO, in which the molar mass diminished down to 20% in a 20–30 days lifespan. While PDO developed crystallinity that prevented the geometry of the fibres, those of PLGA coalesced and collapsed. The scaffolds for long-term applications were PCL and PHB, in which the molar mass followed a progressive decrease, reaching values of 10% for PCL and almost 50% for PHB after 650 days of immersion. This resistant pattern was mainly ascribed to the stability of the crystalline domains of the fibres, in which the diameters remained almost unaffected. From the perspective of an adequate balance between the durability and degradation, this study may serve technologists as a reference point to design polyester-based scaffolds for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document