scholarly journals Applicability of Laser Welding in the Joining of Cast Elements of the Combustion Engine Manifold and Turbine. Part 2. Laser Welding of the Compensating Capsule with the Collector

2020 ◽  
pp. 37-46
Author(s):  
Sebastian Stano ◽  
Radomir Anioł

The article presents attempts related to the laser welding of combustion engine manifold and turbine. The study discussed in the article made it possible to identify the potential and limitations connected with the application of laser welding technologies, workmanship accuracy and the positioning of elements to be welded. The study-related tests enabled the assessment of the effect of primary welding parameters on the shape of the weld both in terms of keyhole and melt-in welding processes. The first part of the research-related article discusses results concerning the laser welding of the compensating capsule with the collector

2021 ◽  
Vol 100 (7) ◽  
pp. 221-228
Author(s):  
Nitesh Kumar ◽  
◽  
Nikhil Kumar ◽  
Asish Bandyopadhyay

Polymers are widely used in automotive parts and fields like mechatronics and biomedical engineering because of their excellent properties, such as high durability and light weight. Welding of polymers has grown to be an important field of research due to its relevance among products of everyday life. Through transmission laser welding (TTLW) has been frequently selected by the contemporary re-searchers in the field of welding as it is relatively modern and more efficient than other welding processes. This pa-per reviews the influence of different processing parameters, including laser power, scanning speed, standoff distance, and clamping pressure. The present article is expected to provide the reader with a comprehensive under-standing of TTLW and research on the aforementioned four welding parameters in TTLW. The significance of finite element modeling, a few simulation studies, different optimization approaches, morphological characteristics, and other behaviors of laser welded polymers will be included in the next part of the review.


2021 ◽  
Vol 55 (3) ◽  
Author(s):  
Josef Bradáč ◽  
Jiří Hozman ◽  
Jan Lamač

The main objective of this paper was focused on a numerical study related to a proper evaluation of the temperature field during the laser-welding process. The investigated material used for the experiments was Fe3Al, given its properties and promising application potential. The original experiment was based on a 3D model of a butt weld. However, to reduce the computational complexity, a planar variant of the heat-transfer equation with suitable choices of surface and volumetric heat sources, given by modified Gaussian pulses, is used to model the temperature distribution in the fixed cross cut during the laser welding. Subsequently, the numerical scheme based on the discontinuous Galerkin method was employed to evaluate the temperature field more properly and to identify the main characteristics of the molten zone. Finally, the numerical study was performed for various combinations of the welding parameters, such as laser-beam power and welding speed. The obtained results were in good agreement with the expected behavior, and thus illustrate the optimization potential of the proposed numerical scheme in the similar issues of a laser-welding processes.


2019 ◽  
Vol 25 ◽  
pp. 12-16
Author(s):  
Tamás Csizér ◽  
Tamás Temesi ◽  
László Molnár

Modern welding processes that can easily be automated (such as friction stir welding, laser welding and ultrasonic welding) are gaining popularity in joining metal-polymer hybrid structures. This field of science is intensively studied around the globe, as a dependable, productive joining method that directly produces structurally sound joints between a metal and a polymer structure could unleash unforeseen possibilities in the vehicle industry. In our experiments, we manufactured hybrid steel-poly(methyl-methacrylate) (PMMA) joints with laser welding, using the 2p design of experiment method. We measured the effect of cellulose reinforcing fibres (in varying weight percentages) on the transparency and weldability of the PMMA material and the effect of welding parameters on the mechanical properties of the joints. We also examined the vicinity of the welded seam with scanning electron microscopy.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Daniel Kohls ◽  
Carlos Enrique Ninõ Bohorquez ◽  
Enori Gemilli ◽  
Majorie Anacleto Bernardo

With the use of laser welding, it is possible to join different steel, with different thicknesses, with or without the action of protective layers. The quality of laser radiation makes it possible to get certain characteristics that are impossible to get by other processes, such as high welding speeds, less metallurgical effects suffered by the heat-affected zone (ZAC), and this process also does not require filler metal, therefore it is free from possible contamination. Combined with traditional welding methods, laser welding produces narrower weld beads, allowing for better prevention of corrosion and thermal distortions. Although the process already has high industrial knowledge, some random defects, such as porosities and inconsistencies, are still found. This work presents a systematic study to determine the influence of laser welding parameters and how these parameters influence welding defects. For this, the experimental part was carried out in the welding laboratory - LABSOLDA, of the Federal University of Santa Catarina - UFSC, during the laser welding processes, a welding speed of 2.4 m/min was reached. For this experiment, argon was used as a shielding gas and 1020 steel was used as the base material.


2015 ◽  
Vol 662 ◽  
pp. 201-204 ◽  
Author(s):  
Ivo Černý ◽  
Jiří Sís

Laser welding is one of advanced and promising joining technologies of metallic materials, characteristic by numerous advantages in comparison with conventional welding processes. The technology still can be considered as fairly new and so, investigations are needed to reach optimum properties of welds in specific application cases, depending on welding parameters. Certification welding procedures usually require to demonstrate sufficient microstructure, mechanical, impact loading and other characteristics, but not fatigue resistance, which is essential for welded dynamically loaded structures. The paper contains results of fatigue resistance investigation of laser welded 10 mm thick sheets of a carbon structural S 355 steel. High cycle fatigue tests were performed after optimizing laser welding parameters. Resulting endurance limit of the welds and heat affected zone was higher than that of basic material. However, high scatter of results and different damage mechanisms were shown for different load amplitudes. The results are discussed on the basis of fractographical analyses, which provided some quite interesting details about crack initiation mechanisms.


Author(s):  
Yan Zhang ◽  
DeShui Yu ◽  
JianPing Zhou ◽  
DaQian Sun ◽  
HongMei Li

Abstract To avoid the formation of Ti-Ni intermetallics in a joint, three laser welding processes for Ti alloy–NiTi alloy joints were introduced. Sample A was formed while a laser acted at the Ti alloy–NiTi alloy interface, and the joint fractured along the weld centre line immediately after welding without filler metal. Sample B was formed while the laser acted on a Cu interlayer. The average tensile strength of sample B was 216 MPa. Sample C was formed while the laser acted 1.2 mm on the Ti alloy side. The one-pass welding process involved the creation of a joint with one fusion weld and one diffusion weld separated by the remaining unmelted Ti alloy. The mechanical performance of sample C was determined by the diffusion weld formed at the Ti alloy–NiTi alloy interface with a tensile strength of 256 MPa.


2020 ◽  
Vol 326 ◽  
pp. 08005
Author(s):  
Mete Demirorer ◽  
Wojciech Suder ◽  
Supriyo Ganguly ◽  
Simon Hogg ◽  
Hassam Naeem

An innovative process design, to avoid thermal degradation during autogenous fusion welding of high strength AA 2024-T4 alloy, based on laser beam welding, is being developed. A series of instrumented laser welds in 2 mm thick AA 2024-T4 alloys were made with different processing conditions resulting in different thermal profiles and cooling rates. The welds were examined under SEM, TEM and LOM, and subjected to micro-hardness examination. This allowed us to understand the influence of cooling rate, peak temperature, and thermal cycle on the growth of precipitates, and related degradation in the weld and heat affected area, evident as softening. Although laser beam welding allows significant reduction of heat input, and higher cooling rates, as compared to other high heat input welding processes, this was found insufficient to completely supress coarsening of precipitate in HAZ. To understand the required range of thermal cycles, additional dilatometry tests were carried out using the same base material to understand the time-temperature relationship of precipitate formation. The results were used to design a novel laser welding process with enhanced cooling, such as with copper backing bar and cryogenic cooling.


Sign in / Sign up

Export Citation Format

Share Document