scholarly journals Computation is Existence — A Brief Overview of the Multi-faceted Implications of Quantum Mechanical Description of Black holes as hyper computational Entities

Author(s):  
Dr. Indrajit Patra

The article attempts to deal with the newly emerging paradigm of black hole computers in which adopting a quantum-mechanical perspective of information enables us to assess the computational power of black holes. Viewing space-time itself as a computational entity and black holes as the supreme forms of serial computers can help us to gain insight into the ideas from gravitational thermodynamics and the emergent nature of space-time and gravity. The idea of black holes as computational entities also relates to quantum gravity which views space-time and foamy and fuzzy due to quantum fluctuations and divided into discrete, Planck-scale blocks.

2014 ◽  
Vol 29 (08) ◽  
pp. 1430011 ◽  
Author(s):  
Benjamin Koch ◽  
Frank Saueressig

Black holes are probably among the most fascinating objects populating our universe. Their characteristic features found within general relativity, encompassing space–time singularities, event horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas. We review the status of black holes within a particular proposal for quantum gravity, Weinberg's asymptotic safety program. Starting from a brief survey of the effective average action and scale setting procedures, an improved quantum picture of the black hole is developed. The Schwarzschild black hole and its generalizations including angular momenta, higher-derivative corrections and the implications of extra dimensions are discussed in detail. In addition, the quantum singularity emerging for the inclusion of a cosmological constant is elucidated and linked to the phenomenon of a dynamical dimensional reduction of space–time.


2005 ◽  
Vol 14 (12) ◽  
pp. 2233-2237 ◽  
Author(s):  
VIQAR HUSAIN ◽  
OLIVER WINKLER

Radiating black holes pose a number of puzzles for semiclassical and quantum gravity. These include the transplanckian problem — the nearly infinite energies of Hawking particles created near the horizon, and the final state of evaporation. A definitive resolution of these questions likely requires robust inputs from quantum gravity. We argue that one such input is a mechanism for a quantum bound on curvature. We show how the same method leads to an upper limit on the redshift of a Hawking emitted particle, to a maximum temperature for a black hole, and to the prediction of a Planck scale remnant.


2007 ◽  
Vol 22 (32) ◽  
pp. 6089-6131 ◽  
Author(s):  
M. RAMÓN MEDRANO ◽  
N. G. SÁNCHEZ

An effective string theory in physically relevant cosmological and black hole space–times is reviewed. Explicit computations of the quantum string entropy, partition function and quantum string emission by black holes (Schwarzschild, rotating, charged, asymptotically flat, de Sitter dS and anti-de Sitter AdS space–times) in the framework of effective string theory in curved backgrounds provide an amount of new quantum gravity results as: (i) gravitational phase transitions appear with a distinctive universal feature: a square-root branch point singularity in any space–time dimensions. This is of the type of the de Vega–Sánchez transition for the thermal self-gravitating gas of point particles. (ii) There are no phase transitions in AdS alone. (iii) For dS background, upper bounds of the Hubble constant H are found, dictated by the quantum string phase transition. (iv) The Hawking temperature and the Hagedorn temperature are the same concept but in different (semiclassical and quantum) gravity regimes respectively. (v) The last stage of black hole evaporation is a microscopic string state with a finite string critical temperature which decays as usual quantum strings do in nonthermal pure quantum radiation (no information loss). (vi) New lower string bounds are given for the Kerr–Newman black hole angular momentum and charge, which are entirely different from the upper classical bounds. (vii) Semiclassical gravity states undergo a phase transition into quantum string states of the same system, these states are duals of each other in the precise sense of the usual classical–quantum (wave–particle) duality, which is universal irrespective of any symmetry or isommetry of the space–time and of the number or the kind of space–time dimensions.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Leonardo Modesto

We calculate modifications to the Schwarzschild solution by using a semiclassical analysis of loop quantum black hole. We obtain a metric inside the event horizon that coincides with the Schwarzschild solution near the horizon but that is substantially different at the Planck scale. In particular, we obtain a bounce of theS2sphere for a minimum value of the radius and that it is possible to have another event horizon close to ther=0point.


2018 ◽  
Vol 191 ◽  
pp. 07003
Author(s):  
Xavier Calmet ◽  
Boris Latosh

We show that alongside the already observed gravitational waves, quantum gravity predicts the existence of two additional massive classical fields and thus two new massive waves. We set a limit on their masses using data from Eöt-Wash-like experiments. We point out that the existence of these new states is a model independent prediction of quantum gravity. We explain how these new classical fields could impact astrophysical processes and in particular the binary inspirals of black holes. We calculate the emission rate of these new states in binary inspirals astrophysical processes.


Author(s):  
Espen Haug

We have recently presented a unified quantum gravity theory [1]. Here we extend on that work and present an even simpler version of that theory. For about hundred years, modern physics has not been able to build a bridge between quantum mechanics and gravity. However, a solution may be found here; we present our quantum gravity theory, which is rooted in indivisible particles where matter and gravity are related to collisions and can be described by collision space-time. In this paper, we also show that we can formulate a quantum wave equation rooted in collision space-time, which is equivalent to mass and energy.The beauty of our theory is that most of the main equations that currently exist in physics are not changed (in terms of predictions), except at the Planck scale. The Planck scale is directly linked to gravity and gravity is, surprisingly, actually a Lorentz symmetry as well as a form of Heisenberg uncertainty break down at the Planck scale. Our theory gives a dramatic simplification of many physics formulas without altering the output predictions. The relativistic wave equation, the relativistic energy momentum relation, and Minkowski space can all be represented by simpler equations when we understand mass at a deeper level. This not attained at a cost, but rather a reflection of the benefit in having gravity and electromagnetism unified under the same theory.


2002 ◽  
Vol 11 (10) ◽  
pp. 1537-1540 ◽  
Author(s):  
SAMIR D. MATHUR

The entropy and information puzzles arising from black holes cannot be resolved if quantum gravity effects remain confined to a microscopic scale. We use concrete computations in nonperturbative string theory to argue for three kinds of nonlocal effects that operate over macroscopic distances. These effects arise when we make a bound state of a large number of branes, and occur at the correct scale to resolve the paradoxes associated with black holes.


2012 ◽  
Vol 18 ◽  
pp. 125-129 ◽  
Author(s):  
EDMUNDO M. MONTE

We investigate the topology of Schwarzschild's black holes through the immersion of this space-time in space of higher dimension. Through the immersions of Kasner and Fronsdal we calculate the extension of the Schwarzschilds black hole.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu-Bo Ma ◽  
Li-Chun Zhang ◽  
Jian Liu ◽  
Ren Zhao ◽  
Shuo Cao

In this paper, by analyzing the thermodynamic properties of charged AdS black hole and asymptotically flat space-time charged black hole in the vicinity of the critical point, we establish the correspondence between the thermodynamic parameters of asymptotically flat space-time and nonasymptotically flat space-time, based on the equality of black hole horizon area in the two different types of space-time. The relationship between the cavity radius (which is introduced in the study of asymptotically flat space-time charged black holes) and the cosmological constant (which is introduced in the study of nonasymptotically flat space-time) is determined. The establishment of the correspondence between the thermodynamics parameters in two different types of space-time is beneficial to the mutual promotion of different time-space black hole research, which is helpful to understand the thermodynamics and quantum properties of black hole in space-time.


2020 ◽  
Vol 35 (25) ◽  
pp. 2050152
Author(s):  
Koichi Nagasaki

We consider the growth of the action for black hole space–time with a fundamental string. Our interest is to find the difference of the behavior between black holes with three different topologies in the scenario of complexity-action conjecture. These black holes have positive, negative and zero curvatures. We would like to calculate the action growth of these systems with a probe fundamental string according to the complexity-action conjecture. We find that for the case where the black holes have the toroidal horizon structure this probe string behaves very differently from the other two cases.


Sign in / Sign up

Export Citation Format

Share Document