Infrared Sensor Calibration Facility

1992 ◽  
Vol 35 (1) ◽  
pp. 33-40
Author(s):  
John Hazen ◽  
L. Scorsone

The Boeing Infrared Sensor (BIRS) Calibration Facility represents a major capital investment by The Boeing Company in optical and infrared technology. The facility was designed and built for calibrating and testing new generation large aperture long wave infrared (LWIR) sensors, seekers, and related technologies. The capability exists to perform both radiometric and goniometric calibrations of large infrared sensors under simulated environmental operating conditions. The system is presently configured for endoatmospheric calibrations with a uniform background field that can be set to simulate the expected mission background levels. During calibration, the sensor under test is also exposed to expected mission temperatures and pressures within the test chamber. The facility could be converted for exoatmospheric testing. The first major test runs in the facility were completed during 1989 with very satisfactory results. This paper will describe system configuration and hardware elements, and will address the modifications made to date. Pitt-Des Moines. Inc. (PDM) of Pittsburgh, Pennsylvania, was the contractor for the turnkey design and construction of the test chambers and thermal vacuum systems. Hughes Danbury Optical Systems (formerly Perkin Elmer Optical Systems) was the hardware supplier for the optical hardware. The Boeing Company performed all optical assembly, integration, testing, and alignment on-site.

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4794 ◽  
Author(s):  
Peter Cappers ◽  
Andrew Satchwell ◽  
Will Gorman ◽  
Javier Reneses

Distributed solar photovoltaic (DPV) under net-energy metering with volumetric retail electricity pricing has raised concerns among utilities and regulators about adverse financial impacts for shareholders and ratepayers. Using a pro forma financial model, we estimate the financial impacts of different DPV deployment levels on a prototypical Western U.S. investor-owned utility under a varied set of operating conditions that would be expected to affect the value of DPV. Our results show that the financial impacts on shareholders and ratepayers increase as the level of DPV deployment increases, though the magnitude is small even at high DPV penetration levels. Even rather dramatic changes in DPV value result in modest changes to shareholder and ratepayer impacts, but the impacts on the former are greater than the latter (in percentage terms). The range of financial impacts are driven by differences in the amount of incremental capital investment that is deferred, as well as the amount of incremental distribution operating expenses that are incurred. While many of the impacts appear relatively small (on a percentage basis), they demonstrate how the magnitude of impacts depend critically on utility physical, financial, and operating characteristics.


2020 ◽  
Vol 12 (15) ◽  
pp. 2468 ◽  
Author(s):  
Dennis Helder ◽  
Cody Anderson ◽  
Keith Beckett ◽  
Rasmus Houborg ◽  
Ignacio Zuleta ◽  
...  

One of the biggest changes in the world of optical remote sensing over the last several years is the sheer increase in the number of sensors that are imaging the Earth in moderate to high spatial resolution. With respect to the calibration of these sensors, they are broadly classified into two types, namely government systems and commercial systems. Because of the differences in the design and mission of these sensor types, calibration approaches are often substantially different. Thus, an opportunity exists to foster discussion between calibration teams for these sensors with the goal of improving overall sensor calibration and data interoperability. The approach used to accomplish this task was a one-day workshop where team members from both government and commercial sensors could share best practices, discuss methods for collaboration and improvement, and make recommendations for continuing activities. Five major recommendations were developed from the event that focused on coordinated activities using pseudo invariant calibration sites (PICS), broader and more consistent communication, collaboration on specific cross-calibration opportunities, developing a reference sensor for all optical systems, and encouraging the coordinated development of surface reflectance products. Workshop participants concluded that regular interactions between these teams could foster a better calibration of all sensor systems and accelerate the improved interoperability of surface products.


2013 ◽  
Vol 136 (6) ◽  
Author(s):  
Bernhardt Lüddecke ◽  
Dietmar Filsinger ◽  
Jan Ehrhard ◽  
Bastian Steinacher ◽  
Christian Seene ◽  
...  

Turbochargers develop away from an auxiliary component—being “off the shelve”—towards an integrated component of the internal combustion engine. Hence, increased attention is paid to the accuracy of the measured turbine and compressor maps. Especially turbine efficiency measurement under engine-relevant operating conditions (pulsed flow) is recently receiving increased attention in the respective research community. Despite various turbine map extrapolation methods, sufficient accuracy of the input test data is indispensable. Accurate experimental data are necessary to achieve high quality extrapolation results, enabling a wide range and precise prediction of turbine behavior under unsteady flow conditions, determined by intermittent operation of the internal combustion engine. The present work describes the first application of a contactless shaft torque measurement technique—based on magnetostriction—to a small automotive turbocharger. The contactless torque measuring system is presented in detail and sensor principle as well as sensor calibration are illustrated. A sensitivity study regarding sensor position influences onto sensor signal proves the robustness and very good repeatability of the system. In the second part of the paper, steady state experimental results from operation on a conventional hot gas test stand over a wide map range are presented. These results are validated against full turbine stage (adiabatic as well as diabatic) CFD results as well as against “cold” efficiency measurements, based on measured inlet and outlet temperatures. The influence and relevance of bearing friction for such measurements is underlined and the improvements on this matter—achieved by direct torque measurement—are demonstrated.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1235 ◽  
Author(s):  
Norihiko Fukuoka ◽  
Katsuaki Tanabe

The plasmonic enhancement of electromagnetic field energy density at the sharp tips of nanoparticles or nanoscale surface roughnesses of hydrogen-absorbing transition metals, Pd, Ti, and Ni, is quantitatively investigated. A large degree of energy focusing is observed for these transition metals in the microwave region, even surpassing the enhancement for noble metals according to the conditions. Pd, for instance, exhibits peak field enhancement factors of 6000 and 2 × 108 in air for morphological aspect ratios of 10 and 100, respectively. Metal surfaces possibly contain such degrees of nano- or micro-scale native random roughnesses, and, therefore, the field enhancement effect may have been unknowingly produced in existing electrical and optical systems. In addition, for future devices under development, particularly in hydrogen-related applications, it is desirable to design and optimize the systems, including the choice of materials, structures, and operating conditions, by accounting for the plasmonic local energy enhancement effect around the metal surfaces.


Author(s):  
Arthur Mealer ◽  
Constantine Tarawneh ◽  
Stephen Crown

The railroad industry utilizes wayside detection systems to monitor the temperature of freight railcar bearings in service. The wayside hot-box detector (HBD) is a device that sits on the side of the tracks and uses a non-contact infrared sensor to determine the temperature of the train bearings as they roll over the detector. Various factors can affect the temperature measurements of these wayside detection systems. The class of the railroad bearing and its position on the axle relative to the position of the wayside detector can affect the temperature measurement. That is, the location on the bearing cup where the wayside infrared sensor reads the temperature varies depending on the bearing class (e.g., class K, F, G, E). Furthermore, environmental factors can also affect these temperature readings. The abovementioned factors can lead to measured temperatures that are significantly different than the actual operating temperatures of the bearings. In some cases, temperature readings collected by wayside detection systems did not indicate potential problems with some bearings, which led to costly derailments. Attempts by certain railroads to optimize the use of the temperature data acquired by these wayside detection systems has led to removal of bearings that were not problematic (about 40% of bearings removed were non-verified), resulting in costly delays and inefficiencies. To this end, the study presented here aims to investigate the efficacy of the wayside detection systems in measuring the railroad bearing operating temperature in order to optimize the use of these detection systems. A specialized single bearing dynamic test rig with a configuration that closely simulates the operating conditions of railroad bearings in service was designed and built by the University Transportation Center for Railway Safety (UTCRS) research team at the University of Texas Rio Grande Valley (UTRGV) for the purpose of this study. The test rig is equipped with a system that closely mimics the wayside detection system functionality and compares the infrared sensor temperature reading to contact thermocouple and bayonet temperature sensors fixed to the outside surface of the bearing cup. This direct comparison of the temperature data will provide a better understanding of the correlation between these temperatures under various loading levels, operating speeds, and bearing conditions (i.e. healthy versus defective), which will allow for an optimization of the wayside detectors. The impact on railway safety will be realized through optimized usage of current wayside detection systems and fewer nonverified bearings removed from service, which translates into fewer costly train stoppages and delays.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2928 ◽  
Author(s):  
Dong Ho Lee ◽  
Jong Hwa Park

Photovoltaic (PV) power generation facilities have been built on various scales due to rapid growth in response to demand for renewable energy. Facilities built on diverse terrain and on such a scale are required to employ fast and accurate monitoring technology for stable electrical production and maintenance. The purpose of this study was to develop a technology to analyze the normal operation and failure of solar modules by acquiring images by attaching optical and thermal infrared sensors to unmanned aerial vehicles (UAVs) and producing orthographic images of temperature information. The results obtained in this study are as follows: (1) a method of using optical and thermal infrared sensors with different resolutions at the same time is able to produce accurate spatial information, (2) it is possible to produce orthographic images of thermal infrared images, (3) the analysis of the temperature fluctuation characteristics of the solar panel and cell showed that the abnormal module and cell displayed a larger temperature change than the normal module and cell, and (4) the abnormal heat generation of the panel and cell can be accurately discerned by the abnormal state panel and cell through the spatial distribution of the temperature. It is concluded that the inspection method of the solar module using the obtained UAV-based thermal infrared sensor can be useful for safety inspection and monitoring of the rapidly growing solar power generation facility.


2019 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Matthew Burns ◽  
Philip Morrow ◽  
Chris Nugent ◽  
Sally McClean

To provide accurate activity recognition within a smart environment, visible spectrum cameras can be used as data capture devices in solution applications. Privacy, however, is a significant concern with regards to monitoring in a smart environment, particularly with visible spectrum cameras. Their use, therefore, may not be ideal. The need for accurate activity recognition is still required and so an unobtrusive approach is addressed in this research highlighting the use of a thermopile infrared sensor as the sole means of data collection. Image frames of the monitored scene are acquired from a thermopile infrared sensor that only highlights sources of heat, for example, a person. The recorded frames feature no discernable characteristics of people; hence privacy concerns can successfully be alleviated. To demonstrate how thermopile infrared sensors can be used for this task, an experiment was conducted to capture almost 600 thermal frames of a person performing four single component activities. The person’s position within a room, along with the action being performed, is used to appropriately predict the activity. The results demonstrated that high accuracy levels, 91.47%, for activity recognition can be obtained using only thermopile infrared sensors.


2019 ◽  
Vol 887 ◽  
pp. 613-621 ◽  
Author(s):  
Richard Slávik ◽  
Miroslav Čekon

Building performance simulations and advanced thermal analysis are becoming the basis for a well-established practice of a building sector. This approach requires many input data which are typically not available on site. Apart from already well-practiced climate variable quantities, such as ambient temperature, solar radiation and parameters of wind, more complex data are needed for advanced building thermal analysis. One of those is based on longwave radiation level. A pyrgeometer is a device that measures longwave radiation part of whole thermal radiation phenomena. This can be determined based on sky or effective ambient temperature monitoring. Secondly, both variables might be approximated by infrared sensors as an applicable option in the calculation of longwave radiation heat exchange between the external surface and the ambient building environment. The paper presents data obtained both by pyrgeometer and infrared sensor corresponding to their mutual comparison to demonstrate its application when longwave radiation exchange needs to be calculated or analyzed in advanced. Integrating of the infrared sensor with aim to monitor the effective ambient and/or sky temperature enables its applicability as an alternative, integrated and less cost consuming method towards the monitoring by commercial pyrgeometer.


Author(s):  
Donghui Zhang ◽  
Rainer Kurz ◽  
Matt Lubomirsky ◽  
David Garcia ◽  
Avneet Singh ◽  
...  

The natural gas midstream gathering and pipeline landscape has become much more dynamic in recent years. Some of the attributes contributing to these continuous changes in operations are due to increased supply from shale gas explorations in North America and increasing natural gas demand in Asia. These changes require new pipelines and compressor stations to be built or existing pipelines and compressor stations to be modified to match new required operating conditions. Economic factors such as initial capital investment and life cycle costs are very important considerations in the decision process to evaluate the benefits of building new stations or modifying existing stations. This paper presents a discussion of some of the more fundamental factors to be considered in evaluating the economics of station optimization projects, and also introduces a variety of options to manage the lifecycle of the centrifugal gas compressors units and stations.


Sign in / Sign up

Export Citation Format

Share Document