scholarly journals Sustainable Thermal Insulation Biocomposites from Locally Available Hemp and Lime

Author(s):  
Maris Sinka ◽  
Genadijs Sahmenko

The key focus of the presented research is on sustainable thermal insulation biocomposites which can be made from locally available hemp and lime. The main gains of the use of such material are given, with emphasis on CO2 reduction. In the first stage samples of an artificial hydraulic lime using three different limes and three hydraulic additives are created and tested, the one with the highest compressive strength (DL60 lime with 40% metakaolin addition) are chosen for further research. In the second stage three different density mixes with the chosen binder are created, optimal hemp/binder ratio is determined, as well as compressive strength and thermal conductivity. Results indicate that created mixtures have good potential as self-bearing thermal insulation material used in low-rise buildings.

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2091
Author(s):  
Mohamed Saeed Barkhad ◽  
Basim Abu-Jdayil ◽  
Abdel Hamid I. Mourad ◽  
Muhammad Z. Iqbal

This work aims to provide an extensive evaluation on the use of polylactic acid (PLA) as a green, biodegradable thermal insulation material. The PLA was processed by melt extrusion followed by compression molding and then subjected to different annealing conditions. Afterwards, the thermal insulation properties and structural capacity of the PLA were characterized. Increasing the annealing time of PLA in the range of 0–24 h led to a considerable increase in the degree of crystallization, which had a direct impact on the thermal conductivity, density, and glass transition temperature. The thermal conductivity of PLA increased from 0.0643 W/(m·K) for quickly-cooled samples to 0.0904 W/(m·K) for the samples annealed for 24 h, while the glass transition temperature increased by approximately 11.33% to reach 59.0 °C. Moreover, the annealing process substantially improved the compressive strength and rigidity of the PLA and reduced its ductility. The results revealed that annealing PLA for 1–3 h at 90 °C produces an optimum thermal insulation material. The low thermal conductivity (0.0798–0.0865 W/(m·K)), low density (~1233 kg/m3), very low water retention (<0.19%) and high compressive strength (97.2–98.7 MPa) in this annealing time range are very promising to introduce PLA as a green insulation material.


2011 ◽  
Vol 306-307 ◽  
pp. 994-997
Author(s):  
Cong Cong Jiang ◽  
Guo Zhong Li ◽  
Shui Zhang

A cement-based foamed lightweight thermal insulation material was prepared with cement, industrial waste (fly ash, steel slag) as the main raw materials, by using self-developed composite activator and foaming agent. The influence of foam content on dry density, compressive strength and thermal conductivity coefficient of material was studied, the activation mechanism of composite activator to fly ash and steel slag was discussed. Results showed that, the dry density and compressive strength of material decreased, and thermal conductivity coefficient decreased first and then increased with the increasing foam content.


2021 ◽  
pp. 0021955X2110626
Author(s):  
Tae Seok Kim ◽  
Yeongbeom Lee ◽  
Chul Hyun Hwang ◽  
Kwang Ho Song ◽  
Woo Nyon Kim

The effect of perfluoroalkane (PFA) on the morphology, thermal conductivity, mechanical properties and thermal stability of rigid polyurethane (PU) foams was investigated under ambient and cryogenic conditions. The PU foams were blown with hydrofluorolefin. Morphological results showed that the minimum cell size (153 μm) was observed when the PFA content was 1.0 part per hundred polyols by weight (php). This was due to the lower surface tension of the mixed polyol solution when the PFA content was 1.0 php. The thermal conductivity of PU foams measured under ambient (0.0215 W/mK) and cryogenic (0.0179 W/mK at −100°C) conditions reached a minimum when the PFA content was 1.0 php. The low value of thermal conductivity was a result of the small cell size of the foams. The above results suggest that PFA acted as a nucleating agent to enhanced the thermal insulation properties of PU foams. The compressive and shear strengths of the PU foams did not appreciably change with PFA content at either −170°C or 20°C. However, it shows that the mechanical strengths at −170°C and 20°C for the PU foams meet the specification. Coefficient of thermal expansion, and thermal shock tests of the PU foams showed enough thermal stability for the LNG carrier’s operation temperature. Therefore, it is suggested that the PU foams blown by HFO with the PFA addition can be used as a thermal insulation material for a conventional LNG carrier.


2016 ◽  
Vol 697 ◽  
pp. 433-436
Author(s):  
Shi Chao Zhang ◽  
Yu Feng Chen ◽  
Wei Wu ◽  
Hao Ran Sun ◽  
Guang Hai Wang ◽  
...  

In this paper, fumed nano-silica as the main raw material, nano-silica insulation materials were prepared by the dry processing. Research on humidity-reinforcement of nano-Silica insulation materials has been carried out and analyzed. When hygroscopicity of samples reach to 23%, the compressive strength 1.65MPa is at twice the one without high humidity-reinforcement, while the thermal conductivities are almost the same. Then, the action mechanism of high humidity-reinforcement method was analyzed. In humidity-reinforcement method, as vapor enters, silica sol is formed in the gap between one aggregate particle and another, and various condensation polymerization occurred in the drying process, which lead to aggregates connection and compressive strength improvement.


2013 ◽  
Vol 662 ◽  
pp. 433-436
Author(s):  
Jiang Zhu ◽  
Guo Zhong Li

Vitrified micro bubbles thermal insulation material was made of vitrified micro bubbles, cement, fly ash, gypsum and sodium silicate, by molding process. VAE emulsion and stearic acid-polyvinyl alcohol emulsion were added to improve water resistance of the material. Mixed with 10% VAE emulsion and 5% stearic acid-polyvinyl alcohol emulsion, properties of the material are followed as: flexural strength 0.64MPa, compressive strength 1.35MPa, softening coefficient 0.71 and 2h volumetric water absorption 6.9%.


2021 ◽  
Vol 887 ◽  
pp. 480-486
Author(s):  
T.N. Vachnina ◽  
I.V. Susoeva ◽  
A.A. Titunin ◽  
S.V. Tsybakin

Many plant wastes are not currently used in production, they are disposed of in landfills or incinerated. The aim of this study is to develop a composite thermal insulation material from unused spinning waste of flax and cotton fibers and soft wood waste. Samples of thermal insulation materials from plant waste were made by drying using the technology of production of soft wood fiber boards. For composite board defined physico-mechanical characteristics and thermal conductivity. The experiment was carried out according to a second-order plan, regression models of the dependences of the material indicators on the proportion of the binder additive, drying temperature and the proportion of wood waste additives were developed. The study showed that composites from unused spinning waste of plant fibers and soft wood waste have the necessary strength under static bending, the swelling in thickness after staying in water is much lower in comparison with the performance of boards from other plant fillers. The coefficient of thermal conductivity of the boards is comparable with the indicator for mineral wool boards.


2015 ◽  
Vol 773-774 ◽  
pp. 1017-1021
Author(s):  
Kamarul Aini Mohd Sari ◽  
Abdul Rahim M. Sani ◽  
Sohif Mat ◽  
Khairiah Hj. Badri

Lightweight aggregate for concrete was produced by utilizing palm-based polyurethane (PU) as a substantial material. New types of green PU were prepared by reacting palm kernel oil polyol (PKO-p) with 2, 4-methylene diphenyl diisocyanate (crude MDI). Six attempts on rigid PU were investigated to determine the reaction time, density, compressive strength, and thermal conductivity. An additional polyol showed high density between 200-300 kg/m3. The compressive strength and thermal conductivity improved to 11.5 MPa and 0.060 W/mK, respectively. As a conclusion, the results of palm-based PU showed excellent properties established the lightweight aggregate and insulation material in the concrete technology.


2013 ◽  
Vol 772 ◽  
pp. 178-181
Author(s):  
Yong Liang Zhan ◽  
Hai Yang Chen ◽  
Xing Hua Hou ◽  
Fei He

Non-shrinking composite silicate insulation material has advantages of low drying shrinkage, density, thermal conductivity and good thermal insulation which withstands high temperature and militates in favor of specially shaped structural member construction, etc. This article describes raw materials and the production process of the above material, discusses thermal insulation characteristics, technical performance and the features of use and particularizes the application effect in the project.


2014 ◽  
Vol 564 ◽  
pp. 315-320 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Mahmoud Tahat

The impact of the thermal conductivity (k-value) change of polystyrene insulation material in building envelope due to changes in temperature on the thermal and energy performance of a typical residential building under hot climate is investigated. Indeed, the thermal and energy performance of buildings depends on the thermal characteristics of the building envelope, and particularly on the thermal resistance of the insulation material used. The thermal insulation material which is determined by its thermal conductivity, which describes the ability of heat to flow cross the material in presence of a gradient of temperature, is the main key to assess the performance of the thermal insulation material. When performing the energy analysis or calculating the cooling load for buildings, we use published values of thermal conductivity of insulation materials, which are normally evaluated at 24°C according to the ASTM standards. In reality, thermal insulation in building is exposed to significant and continuous temperature variations, due essentially to the change of outdoor air temperature and solar radiation. Many types of insulation materials are produced and used in Oman, but not enough information is available to evaluate their performance under the prevailing climatic condition. The main objective of this study is to investigate the relationship between the temperature and thermal conductivity of various densities of polystyrene, which is widely used as building insulation material in Oman. Moreover, the impact of thermal conductivity variation with temperature on the envelope-induced cooling load for a simple building model is discussed. This work will serve as a platform to investigate the effect of the operating temperature on thermal conductivity of other building material insulations, and leads to more accurate assessment of the thermal and energy performance of buildings in Oman.


2012 ◽  
Vol 450-451 ◽  
pp. 1504-1512 ◽  
Author(s):  
Dan Shi ◽  
Ling Shi ◽  
Jun Ying Zhang ◽  
Jue Cheng

A novel nonflammable thermal insulation material for buildings was prepared by foaming sodium silicate solution with blowing agent. The material density is 274 kg/m3,with the compressive strength up to 2.0MPa and the coefficient of heat conductivity low to 0.08 W/ m•K.


Sign in / Sign up

Export Citation Format

Share Document