Nociceptive capacity of plantar irritating stimulus reduction influences postural control in children, teenagers, and adults.

Author(s):  
Janin Marc ◽  
Lisandro Antonio Ceci ◽  
Rodolfo Borges Parreira

Introduction: Sensory information from vestibular, visual, proprioception, and feet contribute on postural control. Plantar afferent contribution comes from the tactile and nociceptive cues of the plantar sole. Nociceptive capacity of plantar irritating stimulus (NCPIS) is one of the foot problems that induce nociception. Objective: Was to determine the postural impact of sensory input flow modifications induced by foam in people with and without nociceptive plantar irritating stimuli in different ages (children, adolescents, and adults). Method: 120 participants with (NP) and X without (Ct) NCPIS in different age group were evaluated (20 subjects in each age group and conditions). Postural balance assessment was performed during two-legged stance test using a force platform. Postural recoding was performed with eyes open in two conditions: on a hard surface and on a foam surface. The postural balance parameter analyzed was center of pressure area and variance of speed. Results: Area and variance of speed in control group increased, whereas decreased in NP subjects. No differences were observed for mean speed. In the Ct group, nociceptor and mechanoreceptor afferent sensations on foam induced postural variation with more oscillations (area and speed). Conclusion: NCPIS influenced postural control, and this foam neutralization of afferent nociception induced a new sensory organization. Foam surface imitated afferent plantar sensory information, induced postural variation as measured by CoP parameters with increasing postural control in subjects without NCIPS and decreasing postural control in subjects with NCPIS.

Author(s):  
Janin Marc ◽  
Lisandro Antonio Ceci ◽  
Rodolfo Borges Parreira

Introduction: Sensory information from vestibular, visual, proprioception, and feet contribute on postural control. Plantar afferentcontribution comes from the tactile and nociceptive cues of the plantar sole. Nociceptive capacity of plantar irritating stimulus (NCPIS) isone of the foot problems that induce nociception. Objective: Was to determine the postural impact of sensory input flow modificationsinduced by foam in people with and without nociceptive plantar irritating stimuli in different ages (children, adolescents, and adults).Method: 120 participants with (NP) and X without (Ct) NCPIS in different age group were evaluated (20 subjects in each age group andconditions). Postural balance assessment was performed during two-legged stance test using a force platform. Postural recoding wasperformed with eyes open in two conditions: on a hard surface and on a foam surface. The postural balance parameter analyzed wascenter of pressure area and variance of speed. Results: Area and variance of speed in control group increased, whereas decreased inNP subjects. No differences were observed for mean speed. In the Ct group, nociceptor and mechanoreceptor afferent sensations onfoam induced postural variation with more oscillations (area and speed). Conclusion: NCPIS influenced postural control, and this foamneutralization of afferent nociception induced a new sensory organization. Foam surface imitated afferent plantar sensory information,induced postural variation as measured by CoP parameters with increasing postural control in subjects without NCIPS and decreasingpostural control in subjects with NCPIS.


2021 ◽  
Vol 4 (1) ◽  
pp. 013-022
Author(s):  
Blanchet Mariève ◽  
Prince François ◽  
Lemay Martin ◽  
Chouinard Sylvain ◽  
Messier Julie

We explored if adolescents with Gilles de la Tourette syndrome (GTS) had functional postural control impairments and how these deficits are linked to a disturbance in the processing and integration of sensory information. We evaluated the displacements of the center of pressure (COP) during maximal leaning in four directions (forward, backward, rightward, leftward) and under three sensory conditions (eyes open, eyes closed, eyes closed standing on foam). GTS adolescents showed deficits in postural stability and in lateral postural adjustments but they had similar maximal COP excursion than the control group. The postural performance of the GTS group was poorer in the eyes open condition (time to phase 1 onset, max-mean COP). Moreover, they displayed a poorer ability to maintain the maximum leaning position under the eyes open condition during mediolateral leaning tasks. By contrast, during forward leaning, they showed larger min-max ranges than control subjects while standing on the foam with the eyes closed. Together, these findings support the idea that GTS produces subclinical postural control deficits. Importantly, our results suggest that postural control disorders in GTS are highly sensitive to voluntary postural leaning tasks which have high demand for multimodal sensory integration.


Author(s):  
Marcio Rogério De Oliveira ◽  
Luana Da Silva Matos ◽  
Paula Thamirys Chaves Simon ◽  
Rubens Alexandre Da Silva Jr ◽  
Viviane De Souza Pinho Costa

Introduction: To be sedentary and have any disease with regard to vestibular pathology can compromise the performance of the postural control and increases the risk of falls. Objective: This study aimed to compare the postural control of elderly active, sedentary and vestibular pathology. Methods:  The sample consisted of 45 elderly separated according to their current health condition: elderly active, sedentary and with vestibulopathy. The postural balance tests were performed in bipedal support, eyes open and the variables measured by the force platform were the center of pressure and average speeds of postural sway in the directions, anteroposterior (A/P) and medial-lateral (M/L). Results: Elderly with vestibulopathy presented significantly poorer postural balance (P <0.05) that active and sedentary group, with large size effect: in mean d >0.80. Conclusion: Elderly with vestibulopathy have poor postural balance that elderly active and sedentary. These findings have any implications for programs of rehabilitation for vestibular disorders. 


2021 ◽  
Vol 8 ◽  
Author(s):  
María del Carmen Carcelén-Fraile ◽  
Agustín Aibar-Almazán ◽  
Antonio Martínez-Amat ◽  
Vânia Brandão-Loureiro ◽  
José Daniel Jiménez-García ◽  
...  

In the present study, we aimed to determine the effects of a Qigong exercise program on the muscle strength and postural control in middle-aged and older postmenopausal women. This is a randomized clinical trial (https://clinicaltrials.gov/ct2/show/NCT03989453) conducted on 125 women who were initially assigned to either an experimental group (n = 63) that performed a Qigong exercise program for 12 weeks or to a control group (n = 62) that did not receive any intervention. Muscle strength (dynamometer) and postural control (stabilometric platform) were evaluated before and immediately after an intervention period. The main findings of this study suggest that the women in the experimental group had improvements in muscle strength, mean velocity of the displacement of the center of pressure (CoP) with both eyes open and closed, and the surface sway area covered by the CoP, as well as the mediolateral and anteroposterior oscillations of the CoP, only with eyes open. The results of the present study determined that a 12 week Qigong exercise program has beneficial effects on muscle strength and postural control of middle-aged and older postmenopausal Spanish women.


2021 ◽  
Vol 15 ◽  
Author(s):  
Katharina Fuchs ◽  
Thomas Krauskopf ◽  
Torben B. Lauck ◽  
Lukas Klein ◽  
Marc Mueller ◽  
...  

Patients with a lower limb amputation rely more on visual feedback to maintain balance than able-bodied individuals. Altering this sensory modality in amputees thus results in a disrupted postural control. However, little is known about how lower limb amputees cope with augmented visual information during balance tasks. In this study, we investigated how unilateral transfemoral amputees incorporate visual feedback of their center of pressure (CoP) position during quiet standing. Ten transfemoral amputees and ten age-matched able-bodied participants were provided with real-time visual feedback of the position of their CoP while standing on a pressure platform. Their task was to keep their CoP within a small circle in the center of a computer screen placed at eye level, which could be achieved by minimizing their postural sway. The visual feedback was then delayed by 250 and 500 ms and was combined with a two- and five-fold amplification of the CoP displacements. Trials with eyes open without augmented visual feedback as well as with eyes closed were further performed. The overall performance was measured by computing the sway area. We further quantified the dynamics of the CoP adjustments using the entropic half-life (EnHL) to study possible physiological mechanisms behind postural control. Amputees showed an increased sway area compared to the control group. The EnHL values of the amputated leg were significantly higher than those of the intact leg and the dominant and non-dominant leg of controls. This indicates lower dynamics in the CoP adjustments of the amputated leg, which was compensated by increasing the dynamics of the CoP adjustments of the intact leg. Receiving real-time visual feedback of the CoP position did not significantly reduce the sway area neither in amputees nor in controls when comparing with the eyes open condition without visual feedback of the CoP position. Further, with increasing delay and amplification, both groups were able to compensate for small visual perturbations, yet their dynamics were significantly lower when additional information was not received in a physiologically relevant time frame. These findings may be used for future design of neurorehabilitation programs to restore sensory feedback in lower limb amputees.


Author(s):  
María del Mar Moreno-Muñoz ◽  
Fidel Hita-Contreras ◽  
María Dolores Estudillo-Martínez ◽  
Agustín Aibar-Almazán ◽  
Yolanda Castellote-Caballero ◽  
...  

Background: Abdominal Hypopressive Training (AHT) provides postural improvement, and enhances deep trunk muscle activation. However, until recently, there was a lack of scientific literature supporting these statements. The major purpose of this study was to investigate the effect of AHT on posture control and deep trunk muscle function. Methods: 125 female participants aged 18–60 were randomly allocated to the Experimental Group (EG), consisting of two sessions of 30 min per week for 8 weeks of AHT, or the Control Group (CG), who did not receive any treatment. Postural control was measured with a stabilometric platform to assess the static balance and the activation of deep trunk muscles (specifically the Transverse Abdominal muscle (TrA)), which was measured by real-time ultrasound imaging. Results: The groups were homogeneous at baseline. Statistical differences were identified between both groups after intervention in the Surface of the Center of Pressure (CoP) Open-Eyes (S-OE) (p = 0.001, Cohen’s d = 0.60) and the Velocity of CoP under both conditions; Open-Eyes (V-OE) (p = 0.001, Cohen´s d = 0.63) and Close-Eyes (V-CE) (p = 0.016, Cohen´s d = 0.016), with the EG achieving substantial improvements. Likewise, there were statistically significant differences between measurements over time for the EG on S-OE (p < 0.001, Cohen´s d = 0.99); V-OE (p = 0.038, Cohen´s d = 0.27); V-CE (p = 0.006, Cohen´s d = 0.39), anteroposterior movements of CoP with Open-Eyes (RMSY-OE) (p = 0.038, Cohen´s d = 0.60) and activity of TrA under contraction conditions (p < 0.001, Cohen´s d = 0.53). Conclusions: The application of eight weeks of AHT leads to positive outcomes in posture control, as well as an improvement in the deep trunk muscle contraction in the female population.


2020 ◽  
Vol 27 (4) ◽  
pp. 385-391
Author(s):  
Jessica Caroliny de Jesus Neves ◽  
Aryane Karoline Vital Souza ◽  
Dirce Shizuko Fujisawa

ABSTRACT The purpose of this study was to compare the postural control between eight-year-old boys and girls, considering the nutritional classification and level of physical activity. This was a cross-sectional study, with a sample of 346 participants, classified by the WHO AnthroPlus software, evaluated on the force platform and the Questionnaire Physical Activity for Children. The results demonstrated that girls showed lower values in relation to the opposite sex (p<0.001), in the center of pressure area (COP) (girls: 11.88 vs boys: 15.86cm2), Antero-posterior Amplitude (girl: 5.40 vs boy: 6.05cm), Medial-lateral Amplitude (girl: 3.97 vs boy: 4.40cm), Antero-posterior velocity (girl: 3.98 vs boy: 4.94cm/s), Medial-lateral velocity (girl: 3.98 vs boy: 4.59cm/s), Antero-posterior frequency (girl: 0.70 vs boy: 0.84Hz). Physical activity was associated with male sex (p=0.001; X2=11.195; odds ratio=0.372). In relation to the center of pressure of sedentary children, girls showed better postural control (p<0.001), but when we analyzed the center of pressure of both sexes who were active there was no statistically significant difference (p=0.112). The Z score of both sexes presented no difference in the center of pressure area (p=0.809 and p=0.785 respectively). Girls showed better postural control, while boys are more active; when both sexes performed physical activity COP area was similar. Therefore, special care should be taken when assessing postural control in boys and girls due to their differences in test performance and stage of development. As for interventions, exercise should be considered for better performance of the COP.


2014 ◽  
Vol 22 (4) ◽  
pp. 645-653 ◽  
Author(s):  
Wagner Oliveira Batista ◽  
Edmundo de Drummond Alves Junior ◽  
Flávia Porto ◽  
Fabio Dutra Pereira ◽  
Rosimere Ferreira Santana ◽  
...  

OBJECTIVE: to ascertain the influence of the length of institutionalization on older adults' balance and risk of falls.METHOD: to evaluate the risk of falls, the Berg Balance Scale and the Timed Get Up and Go test were used; and for measuring postural balance, static stabilometry was used, with acquisition of the elliptical area of 95% and mean velocities on the x and y axes of center of pressure displacement. Parametric and nonparametric measures of association and comparison (α<0.05) were used.RESULTS: there was no significant correlation between the length of institutionalization and the tests for evaluation of risk of falling, neither was there difference between groups and within subgroups, stratified by length of institutionalization and age. In the stabilometric measurements, there was a negative correlation between the parameters analyzed and the length of institutionalization, and difference between groups and within subgroups.CONCLUSION: this study's results point to the difficulty of undertaking postural control tasks, showing a leveling below the clinical tests' reference scores. In the stabilometric behavior, one should note the reduction of the parameters as the length of institutionalization increases, contradicting the assumptions. This study's results offer support for the development of a multi-professional model for intervention with the postural control and balance of older adults living in homes for the aged.


Author(s):  
Bożena Wojciechowska-Maszkowska ◽  
Dorota Borzucka

The aim of this study was to evaluate the effect of additional load on postural-stability control in young women. To evaluate postural control in the 34 women in this study (mean age, 20.8 years), we measured postural sway (center of pressure, COP) in a neutral stance (with eyes open) in three trials of 30 s each. Three load conditions were used in the study: 0, 14, and 30 kg. In analysis, we used three COP parameters, variability (linear), mean sway velocity (linear), and entropy (nonlinear). Results suggested that a considerable load on a young woman’s body (approximately 48% of body weight) had significant influence on stability. Specifically, heavy loads triggered random movements, increased the dynamics of postural-stability control, and required more attention to control standing posture. The results of our study indicate that inferior postural control mainly results from insufficient experience in lifting such a load.


2019 ◽  
Vol 67 (1) ◽  
pp. 235-245
Author(s):  
Javier Fernández-Rio ◽  
Luis Santos ◽  
Benjamín Fernández-García ◽  
Roberto Robles ◽  
Iván Casquero ◽  
...  

AbstractThe goal of this study was to assess the effects of a supervised slackline training program in a group of soccer players. Thirty-four male division I under-19 players (16.64 ± 0.81 years) agreed to participate in the study. They were randomly divided into an experimental group (EG) and a control group (CG). The first group (EG) followed a 6-week supervised slackline training program (3 sessions/week; 5-9 min/session), while the CG performed only regular soccer training. Several variables were assessed in all participants: acceleration (20-m sprint test), agility (90º turns test), jump performance (squat jump, countermovement jump), and postural control (Center of Pressure ( CoP) testing: length, area, speed, Xmean, Ymean, Xspeed, Yspeed, Xdeviation, Ydeviation). Ratings of perceived exertion and local muscle ratings of perceived exertions were also recorded after each slackline training session. At post-tests, there was a significant increase only in the EG in acceleration, agility, squat jump and countermovement jump performance, as well as several CoP variables: area in the bipedal support on a firm surface, and length, area and speed in the left leg on a firm surface. The program was rated as “somewhat hard” by the players, while quadriceps, gastrocnemius and tibialis anterior were the most exerted muscles while slacklining. In conclusion, slackline training can be an effective training tool for young, high-level soccer players.


Sign in / Sign up

Export Citation Format

Share Document