scholarly journals Chemical composition and biological activity of peat deposits of oligotrophic bog

2018 ◽  
Vol 7 (3) ◽  
pp. 82-87
Author(s):  
Ekaterina Vladimirovna Porokhina ◽  
Margarita Alexandrovna Sergeeva ◽  
Olga Alexandrovna Golubina

The article presents the results of the main general technical, physical and chemical, microbiological and biochemical properties of the oligotrophic bog (Tomsk Region). It shows that peat oligotrophic bog belong to low-ash (2,3-10,9%), high - acid (2,2-3,6 units of pH), with the degree of decomposition - 20-50%. The authors find that the concentration of ammonium nitrogen increases with depth, and nitrate - decreases. The largest accumulation of mobile connections of phosphorus observed in the upper layer of peat deposits (11,20 mg/100 g dry peat). The maximum population of bacterial was concentrated in the upper layers of the deposit (20,6-22,4 billion cells/g). Spores, mycelium was detected in the fungal biomass only to a depth of 175 cm. The correlation analysis showed a direct relationship of fungal mycelium from the readily hydrolyzable substance (r = 0,84). Catalase activity varies from 0,99 to 7,32 ml O2 / g 2 min in peat bog deposit. The activity of catalase was influenced by the botanical composition The activity of polyphenol oxidase varies in the peat deposit from 0,13 to 6,72 mg of 1,4-benzoquinone / g 30 min, changing unevenly in depth. The limits of peroxidase activity in peat bog were 0,69-26,19 mg 1,4-benzoquinone/g 30 min.

2019 ◽  
pp. 337-347
Author(s):  
Ol'ga Aleksandrovna Golubina ◽  
Tat'yana Nikolayevna Tsybukova ◽  
Elena Nikitichna Tveryakova ◽  
Irina Aleksandrovna Perederina ◽  
Galina Aleksandrovna Zholobova ◽  
...  

Peats and marsh waters of the peat bog eutrophic ecosystem (Tomsk region) for the content of trace elements have been studied. The peat deposit is composed of lowland peats of grass type predominantly. The deposit average depth is about 3 meters. Samples of several observation points, which differ in botanical composition and hydrothermal conditions of occurrence were analyzed. The concentration of biogenic (Zn, Co, Cr), alkaline (Rb, Cs), alkaline earth (Sr, Ba) and rare earth (Hf, La) metals in peat and marsh waters has been determined by the method of neutron activation analysis. It was shown that the amount of various elements in peat is determined by regional characteristics and botanical composition. From comparative elements concentration analysis, it has been found that concentration of metals varies identically depending on the depth of the peat bog, which indicates typical conditions for the accumulation of these elements. As a result of the research was founded high content of the Ba and Sr in peats of all observation points. It has been established that the peat of native section 3 is enriched with all studied metals Zn, Cr, Sr, Ba in comparison with peats of the first and the second observation points. Besides, under the conditions of this ecosystem cobalt, rubidium and lanthanum were accumulated in peats. The average concentration of trace elements in the studied peat bog ecosystem is comparable to the average values of this region. We have found that samples of marsh water are enriched with the biogenic zinc. Among rare metals, such elements as strontium and barium are the most abundant in marsh water, what correlates with the largest content of Zn, Sr and Ba in the studied peats. Light Rb and Sr ions transfer from peat to swamp waters in greater amount than heavier Cs and Ba ions. Strontium enters and migrates intensively to the swamp waters of all three observation points.


Author(s):  
О.А. ГОЛУБИНА ◽  
И.А. ПЕРЕДЕРИНА ◽  
Е.Н. ТВЕРЯКОВА ◽  
Ю.Ю. МИРОШНИЧЕНКО ◽  
Е.А. КУРЦЕВИЧ ◽  
...  

Методом нейтронно-активационного анализа охарактеризованы торфы и болотные воды месторождения Таган (Томский район, Томская область) на содержание биогенных макро- (Na, Ca, Fe) и микроэлементов (Zn, Co, Cr). Анализ образцов с нескольких пунктов наблюдений, различающихся по ботаническому составу и гидротермическим условиям залегания, показал, что элементный состав торфов характеризуется региональными особенностями и ботаническим составом. Концентрации элементов по глубинам трех пунктов наблюдений изменяются синхронно, что свидетельствует о типичности условий накопления этих элементов. Среднее содержание микроэлементов в изучаемой торфяно-болотной экосистеме сопоставимо со средними значениями данного региона. The concentration of biogenic macro- (Na, Ca, Fe) and microelements (Zn, Co, Cr) in peat and bog waters of the Tagan Deposit (Tomsk District, Tomsk Region) was determined by neutron activation analysis. Analysis of samples from several observation points which differ in botanic composition and hydrothermal mode of occurrence showed that the amount of various elements in peat is determined by regional characteristics and botanical composition. From comparative elements concentration analysis, it has been found that concentration of elements varies identically depending on the depth of the peat bog, which indicates typical conditions for the accumulation of these elements. The average concentration of trace elements in the studied peat-bog ecosystem is comparable to the average values of this region.


1966 ◽  
Vol 44 (4) ◽  
pp. 421-427 ◽  
Author(s):  
John M. Stewart ◽  
Edward A. C. Follett

Phragmites communis, Eriophorum vaginatum, Calluna vulgaris, and Sphagnum palustre are representative of plants whose remains are frequently encountered in Scottish peat deposits. The effects of preservation in peat on the surface features of their leaves were followed by electron microscopy. Wax projections were observed on the surfaces of mature living leaves of Phragmites and Eriophorum but not on Calluna or Sphagnum. Details of cell wall outlines and stomata (or pores) were clearly defined in Phragmites, Eriophorum, and Sphagnum, but obscured in Calluna. The previous year's leaves differed by displaying a general absence of wax projections, an erosion of the cuticular surface, which took the form of either a loss in definition of the cell wall outlines or a definite etching of the surface, and the presence of numerous microorganisms. The surface features of preserved leaves exhibited to a greater degree this erosion of cell wall outline and cuticular surface. This preliminary study has indicated that major alterations in the submicroscopic features of cuticularized leaf surfaces occur at the leaf litter stage. The primary agents responsible for this degradation would appear to be microorganisms in conjunction with the physical and chemical processes of peat formation.


2020 ◽  
pp. 33-43
Author(s):  
Olga N. Ratnicava ◽  
Irina P. Lisitsyna ◽  
Inna V. Аgeichik

Based on studies of geomorphology, stratigraphy, hydrology, various maps of Polesie, zones of influence of amelioration canals, vegetation maps, modern satellite images, as well as field studies of peatlands of Pripyat Polesie, two independent drainage systems have been identified, with a network of amelioration canals that intensively discharge water into the rivers Stwiga and Ybort`. Maps of key points were built In GIS-format, on which five sites were laid in the field within the Mezhch and Neresnya peat deposits for further long-term monitoring of GWL parameters. The locations of the sensors installation are based on the relationship of bog phytocenoses with the average annual GWL values and the amplitude of their fluctuations. Analysis of the GWL parameters before and after environmental rehabilitation measures will allow assessing the effectiveness of planned measures in disturbed areas and obtaining new data on areas of peat deposits in their natural state.


1963 ◽  
Vol 46 (2) ◽  
pp. 128-130 ◽  
Author(s):  
J.R. Ridley ◽  
A.L. Lesperance ◽  
E.H. Jensen ◽  
V.R. Bohman

2014 ◽  
Author(s):  
Bingyu Zhao ◽  
Saul Burdman ◽  
Ronald Walcott ◽  
Tal Pupko ◽  
Gregory Welbaum

The specific objectives of this BARD proposal were: Use a comparative genomics approach to identify T3Es in group I, II and III strains of A. citrulli. Determine the bacterial genes contributing to host preference. Develop mutant strains that can be used for biological control of BFB. Background to the topic: Bacterial fruit blotch (BFB) of cucurbits, caused by Acidovoraxcitrulli, is a devastating disease that affects watermelon (Citrulluslanatus) and melon (Cucumismelo) production worldwide, including both Israel and USA. Three major groups of A. citrullistrains have been classified based on their virulence on host plants, genetics and biochemical properties. The host selection could be one of the major factors that shape A. citrullivirulence. The differences in the repertoire of type III‐ secreted effectors (T3Es) among the three A. citrulligroups could play a major role in determining host preferential association. Currently, there are only 11 A. citrulliT3Es predicted by the annotation of the genome of the group II strain, AAC00‐1. We expect that new A. citrulliT3Es can be identified by a combination of bioinformatics and experimental approaches, which may help us to further define the relationship of T3Es and host preference of A. citrulli.   Implications, both scientific and agricultural: Enriching the information on virulence and avirulence functions of T3Es will contribute to the understanding of basic aspects of A. citrulli‐cucurbit interactions. In the long term, it will contribute to the development of durable BFB resistance in commercial varieties. In the short term, identifying bacterial genes that contribute to virulence and host preference will allow the engineering of A. citrullimutants that can trigger SAR in a given host. If applied as seed treatments, these should significantly improve the effectiveness and efficacy of BFB management in melon and atermelon production. 


2012 ◽  
Vol 7 (3) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Zhanjie Xu ◽  
Peng Du ◽  
Peter Meiser ◽  
Claus Jacob

Proanthocyanidins represent a unique class of oligomeric and polymeric secondary metabolites found ubiquitously and in considerable amounts in plants and some algae. These substances exhibit a range of rather surprising physical and chemical properties which, once applied to living organisms, are translated into a multitude of biological activities. The latter include antioxidant properties, cancer chemoprevention, anti-inflammatory and anti-diabetic effects as well as some exceptional, yet highly interesting activities, such as anti-nutritional and antimicrobial activity. Despite the wide range of activities and possible medical/agricultural applications of proanthocyanidins, many questions still remain, including issues related to bioavailability, metabolism and the precise biochemical, extra- and intracellular targets and mode(s) of action of these highly potent materials. Among the various physical and chemical interactions of such substances, strong binding to proteins appears to form the basis of many of their biological activities. Once easy-to-use synthetic methods to produce appropriate quantities of pure proanthocyanidins are available, it will be possible to identify the prime biological targets of these oligomers, study oligomer-protein interactions in more detail and develop possible practical applications in medicine and agriculture.


A study has been made of the distribution and activities of bacteria and zooplankton as they varied seasonally in 1980 and 1981 in the vicinity of a shallow-sea tidal mixing front in the western Irish Sea (approximate position 53° 20' N, 5° 45' W to 53° 50' N, 5° 0' W ). This paper presents the physical and chemical background to these studies as shown by the variations in temperature and salinity and concentrations of chlorophyll a , phaeopigments, cellular adenosine triphosphate (ATP), nitrate, nitrite and ammonium nitrogen, in sections normal to the front. Observations at drogue stations were made to establish the extent of diurnal variations in these properties but these appeared to be small relative to other variations. As the front developed, higher chlorophyll a concentrations appeared in the surface stratified water, in contrast to the bottom stratified water and mixed water, with highest concentrations at the surface at the stratified side of the front and in subsurface patches in the vicinity of the pycnocline. As the phytoplankton populations increased nitrate became depleted in the surface stratified water but nitrite and ammonium nitrogen concentrations remained at about the same levels. Cellular ATP concentration did not appear to be a useful measure of total biomass but indicated high biological activity in the surface stratified water.


1966 ◽  
Vol 46 (2) ◽  
pp. 155-160 ◽  
Author(s):  
G. R. Saini ◽  
A. A. MacLean ◽  
J. J. Doyle

The relationship of the mean weight diameter of water-stable aggregates to certain soil properties (clay, organic matter, free iron, free aluminum, and polysaccharide contents) and the relationship of the increase in aggregation caused by VAMA to the same properties of 24 New Brunswick soils were evaluated by correlation and regression analyses.Simple correlation coefficients relating aggregation to soil properties indicated that organic matter (r = 0.627), polysaccharides (r = 0.602), and aluminum (r = 0.679) were the most important factors. However, when the influence of each factor was separated by partial correlation, the coefficients were not significant. On the other hand, the combined effects of all factors as indicated by the multiple correlation coefficient (r = 0.743) was significant at the 1% level. The effect of the same soil properties on response to VAMA, as shown by increase in mean weight diameter, indicated that clay exerted the greatest influence. The relationship with other factors was nonsignificant.


Sign in / Sign up

Export Citation Format

Share Document