The July 2020 Mw 6.3 Nima Earthquake, Central Tibet: A Shallow Normal-Faulting Event Rupturing in a Stepover Zone

Author(s):  
Jiuyuan Yang ◽  
Caijun Xu ◽  
Yangmao Wen ◽  
Guangyu Xu

Abstract On 22 July 2020, an Mw 6.3 earthquake with a predominantly normal-faulting mechanism struck the Yibug Caka fault zone, central Tibet, where the overall tectonic environment is characterized by left-lateral strike-slip motion. This event offers a chance to gain insight into the tectonic deformation and the cause of shallow normal-faulting earthquakes in this little studied region. Here, we use Sentinel-1A/B Interferometric Synthetic Aperture Radar data to investigate the coseismic and postseismic deformation related to this earthquake. The earthquake ruptured a previously mapped West Yibug Caka fault and is dominated by normal slip with a peak value of 1.9 m at depth of 6.9 km. Postseismic deformation analysis indicates that the observed subsidence signals of up to ∼4.7 cm are a consequence of afterslip. Most of the afterslip is confined at depths between 0.8 and 8.4 km, peaking at 0.27 m at depth of 6.1 km. The significant coseismic slip and afterslip involved in the earthquake highlights a complex interaction between the major normal fault and the secondary synthetic fault. By an integrated analysis of the inversions, regional geology geomorphology, fault kinematics, and seismicity background, we propose a tectonic model that attributes the occurrence of this normal-faulting event to the release of extensional stress in a stepover zone controlled by the northeast-striking sinistral strike-slip Riganpei Co fault and Bu Zang Ai fault. Compared with that the structural stepover often acts as a barrier to affect the propagation of earthquake rupture, our study demonstrates that the failure of a stepover may potentially induce the occurrence of earthquake along the bounding strike-slip faults.

2021 ◽  
Author(s):  
Edwin Nissen ◽  
Mussaver Didem Cambaz ◽  
Élyse Gaudreau ◽  
Andrew Howell ◽  
Ezgi Karasözen ◽  
...  

We investigate active tectonics in southwestern Turkey along the trend between Fethiye, near the eastern end of the Hellenic subduction zone, and Burdur, on the Anatolian plateau. Previously, regional GPS velocity data have been used to propose either (1) a NE-trending zone of strike-slip faulting coined the Fethiye-Burdur Fault Zone, or (2) a mix of uniaxial and radial extension accommodated by normal faults with diverse orientations. We test these models against the available earthquake data, updated in light of recent earthquakes at Acıpayam (20 March 2019, Mw 5.6) and Bozkurt (8 August 2019, Mw 5.8) — the largest in this region in the last two decades — and at Arıcılar (24 November 2017, Mw 5.3). Using Sentinel-1 InSAR and seismic waveforms and arrival times, we show that the Acıpayam, Bozkurt and Arıcılar earthquakes were buried ruptures on pure normal faults with subtle or indistinct topographic expressions. By exploiting ray paths shared with these well-recorded modern events, we relocate earlier instrumental seismicity throughout southwestern Turkey. We find that the 1971 Mw 6.0 Burdur earthquake likely ruptured a NW-dipping normal fault in an area of indistinct geomorphology near Salda Lake, contradicting earlier studies that place it on well-expressed faults bounding the Burdur basin. Overall, the northern Fethiye-Burdur trend is characterized by orthogonal normal faulting, consistent with radial extension and likely responsible for the distinct physiography of Turkey's 'Lake District'. The southern Fethiye-Burdur trend is dominated by ESE-WNW trending normal faulting, even though most faults evident in the topography strike NE-SW. This hints at a recent change in regional strain, perhaps related to eastward propagation of the Gökova graben into the area or to rapid subsidence of the Rhodes basin. Overall, our results support GPS-derived tectonic models that depict a mix of uniaxial and radial extension throughout southwestern Turkey, with no evidence for major, active strike-slip faults anywhere along the Fethiye-Burdur trend. Normal faulting orientations are consistent with a stress field driven primarily by contrasts in gravitational potential energy between the elevated Anatolian plateau and the low-lying Rhodes and Antalya basins.


1988 ◽  
Vol 78 (4) ◽  
pp. 1463-1474
Author(s):  
Donald A. Stevenson ◽  
James D. Agnew

Abstract On 16 October 1983, at 19:40 (UTC), a magnitude 3.8 earthquake occurred near Lake Charles in southwestern Louisiana. The earthquake was felt over an area of 2600 km2 and had a maximum Modified Mercalli intensity of V. This was the first significant Louisiana Gulf Coast earthquake to be recorded and located by nearby microseismic networks. One possible foreshock and three aftershocks also were recorded and located using a velocity model developed for this study. The focal mechanism of the earthquake was determined based on P-wave first motions from 22 local and regional stations. The solution indicates a predominantly east-west trending, southeast-dipping normal fault with a small strike-slip component. The depth of this event (14+ km) provides the first significant evidence that normal faulting within the crystalline basement may control shallower growth faults along the Gulf Coast.


2020 ◽  
Vol 221 (1) ◽  
pp. 492-503 ◽  
Author(s):  
Li Yongsheng ◽  
Tian Yunfeng ◽  
Yu Chen ◽  
Su Zhe ◽  
Jiang Wenliang ◽  
...  

SUMMARY Numerous V-shaped conjugate strike-slip fault systems distributed between the Lhasa block and the Qiangtang block serve as some of the main structures accommodating the eastward motion of the Tibetan Plateau. The Beng Co-Dongqiao conjugate fault system is a representative section, and determining its tectonic environment is a fundamental issue for understanding the dynamic mechanism of the V-shaped conjugate strike-slip fault systems throughout central Tibet. In this paper, we investigate the deformation rates of the Beng Co-Dongqiao conjugate faults using 3 yr of SAR data from both ascending and descending tracks of Sentinel-1 satellites. Only interferograms with a long temporal baseline were used to increase the proportion of the deformation signals. The external atmospheric delay product and the InSAR stacking strategy were employed to reduce various errors in the large-spatial-coverage Sentinel-1 data. The InSAR results revealed that the fault-parallel deformation velocities along the eastern and western segments of the Beng Co fault are 5 ± 1 mm/yr and 2.5 ± 1 mm/yr, respectively. The second invariant of the horizontal strain rates shows that the accumulated strain is centered on the eastern segment of the Beng Co Fault and Gulu rift. The velocity and strain rate fields show that the Anduo-Peng Co faults may be paired with the Beng Co fault to form a new conjugate system and the tectonic transformation between the Beng Co fault and Gulu rift. These results can better explain the tectonic deformation environment of the Beng Co-Dongqiao conjugate fault system and provide insights on the crustal dynamics throughout the entire plateau interior.


1989 ◽  
Vol 79 (1) ◽  
pp. 31-50
Author(s):  
Diane I. Doser

Abstract Waveform modeling and first motion analysis are used to determine the source parameters of six 5.8 ≦ M ≦ 6.8 earthquakes that occurred between 1925 and 1964 within the northern Intermountain Seismic Belt of Montana. Results of this study suggest that the 1925 Clarkston earthquake occurred along an oblique normal fault with a trend similar to the southern end of the Clarkston Valley fault. The two largest earthquakes of the 1935 Helena sequence occurred along right-lateral strike-slip faults with trends similar to the Bald Butte and Helena Valley faults. The 1947 Virginia City earthquake occurred along a northwest-southeast trending segment of the Madison fault. Movement at depth was along a fault with strike similar to that of the 1959 Hebgen Lake main shock. A reanalysis of a M = 6.0 aftershock of the 1959 Hebgen Lake sequence suggests the earthquake occurred at a depth of 8 km along a fault that is not seen at the surface. An M = 5.8 earthquake in 1964, located about 10 km from the 1959 aftershock, may have occurred along steeply dipping fault planes (48° to 80°) at depths of 8 to 14 km. Most events could be modeled as simple ruptures.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Masayuki Kano ◽  
Shin’ichi Miyazaki ◽  
Yoichi Ishikawa ◽  
Kazuro Hirahara

Abstract Postseismic Global Navigation Satellite System (GNSS) time series followed by megathrust earthquakes can be interpreted as a result of afterslip on the plate interface, especially in its early phase. Afterslip is a stress release process accumulated by adjacent coseismic slip and can be considered a recovery process for future events during earthquake cycles. Spatio-temporal evolution of afterslip often triggers subsequent earthquakes through stress perturbation. Therefore, it is important to quantitatively capture the spatio-temporal evolution of afterslip and related postseismic crustal deformation and to predict their future evolution with a physics-based simulation. We developed an adjoint data assimilation method, which directly assimilates GNSS time series into a physics-based model to optimize the frictional parameters that control the slip behavior on the fault. The developed method was validated with synthetic data. Through the optimization of frictional parameters, the spatial distributions of afterslip could roughly (but not in detail) be reproduced if the observation noise was included. The optimization of frictional parameters reproduced not only the postseismic displacements used for the assimilation, but also improved the prediction skill of the following time series. Then, we applied the developed method to the observed GNSS time series for the first 15 days following the 2003 Tokachi-oki earthquake. The frictional parameters in the afterslip regions were optimized to A–B ~ O(10 kPa), A ~ O(100 kPa), and L ~ O(10 mm). A large afterslip is inferred on the shallower side of the coseismic slip area. The optimized frictional parameters quantitatively predicted the postseismic GNSS time series for the following 15 days. These characteristics can also be detected if the simulation variables can be simultaneously optimized. The developed data assimilation method, which can be directly applied to GNSS time series following megathrust earthquakes, is an effective quantitative evaluation method for assessing risks of subsequent earthquakes and for monitoring the recovery process of megathrust earthquakes.


2020 ◽  
Vol 110 (3) ◽  
pp. 1090-1100
Author(s):  
Ronia Andrews ◽  
Kusala Rajendran ◽  
N. Purnachandra Rao

ABSTRACT Oceanic plate seismicity is generally dominated by normal and strike-slip faulting associated with active spreading ridges and transform faults. Fossil structural fabrics inherited from spreading ridges also host earthquakes. The Indian Oceanic plate, considered quite active seismically, has hosted earthquakes both on its active and fossil fault systems. The 4 December 2015 Mw 7.1 normal-faulting earthquake, located ∼700  km south of the southeast Indian ridge in the southern Indian Ocean, is a rarity due to its location away from the ridge, lack of association with any mapped faults and its focal depth close to the 800°C isotherm. We present results of teleseismic body-wave inversion that suggest that the earthquake occurred on a north-northwest–south-southeast-striking normal fault at a depth of 34 km. The rupture propagated at 2.7  km/s with compact slip over an area of 48×48  km2 around the hypocenter. Our analysis of the background tectonics suggests that our chosen fault plane is in the same direction as the mapped normal faults on the eastern flanks of the Kerguelen plateau. We propose that these buried normal faults, possibly the relics of the ancient rifting might have been reactivated, leading to the 2015 midplate earthquake.


1979 ◽  
Vol 16 (10) ◽  
pp. 1965-1977 ◽  
Author(s):  
W. M. Schwerdtner ◽  
D. Stone ◽  
K. Osadetz ◽  
J. Morgan ◽  
G. M. Stott

Two principal, possibly overlapping, periods of tectonic deformation can be distinguished in the Archean of northwestern Ontario, a period of dominantly vertical-motion tectonics and a period of dominantly horizontal-motion tectonics. Gigantic diapirs of foliated to gneissic tonalite–granodiorite developed during the first period and appear to be responsible for the gross structure of, and the major folds within, the metavolcanic–metasedimentary masses ("greenstone belts"). These diapirs are most likely due to mechanical remobilization of early tabular batholiths which originally intruded the oldest supracrustal rocks presently exposed. Later massive to foliated, dioritic to granitic plutons that vary from concordant, crescentic plutons to partly discordant plutons of various shapes and sizes were emplaced into the diapirs.The second period of tectonic deformation is characterized by large-scale dextral shearing and the development of major transcurrent faults under northwesterly regional compression. The strike-slip motions of this period outlasted the late plutonism, and led to the development of mylonitic zones which cut all Archean granitoid plutons.


2021 ◽  
Author(s):  
Duna Roda-Boluda ◽  
Taylor Schildgen ◽  
Hella Wittmann-Oelze ◽  
Stefanie Tofelde ◽  
Aaron Bufe ◽  
...  

<p>The Southern Alps of New Zealand are the expression of the oblique convergence between the Pacific and Australian plates, which move at a relative velocity of nearly 40 mm/yr. This convergence is accommodated by the range-bounding Alpine Fault, with a strike-slip component of ~30-40 mm/yr, and a shortening component normal to the fault of ~8-10 mm/yr. While strike-slip rates seem to be fairly constant along the Alpine Fault, throw rates appear to vary considerably, and whether the locus of maximum exhumation is located near the fault, at the main drainage divide, or part-way between, is still debated. These uncertainties stem from very limited data characterizing vertical deformation rates along and across the Southern Alps. Thermochronology has constrained the Southern Alps exhumation history since the Miocene, but Quaternary exhumation is hard to resolve precisely due to the very high exhumation rates. Likewise, GPS surveys estimate a vertical uplift of ~5 mm/yr, but integrate only over ~10 yr timescales and are restricted to one transect across the range.</p><p>To obtain insights into the Quaternary distribution and rates of exhumation of the western Southern Alps, we use new <sup>10</sup>Be catchment-averaged erosion rates from 20 catchments along the western side of the range. Catchment-averaged erosion rates span an order of magnitude, between ~0.8 and >10 mm/yr, but we find that erosion rates of >10 mm/yr, a value often quoted in the literature as representative for the entire range, are very localized. Moreover, erosion rates decrease sharply north of the intersection with the Marlborough Fault System, suggesting substantial slip partitioning. These <sup>10</sup>Be catchment-averaged erosion rates integrate, on average, over the last ~300 yrs. Considering that the last earthquake on the Alpine Fault was in 1717, these rates are representative of inter-seismic erosion. Lake sedimentation rates and coseismic landslide modelling suggest that long-term (~10<sup>3</sup> yrs) erosion rates over a full seismic cycle could be ~40% greater than our inter-seismic erosion rates. If we assume steady state topography, such a scaling of our <sup>10</sup>Be erosion rate estimates can be used to estimate rock uplift rates in the Southern Alps. Finally, we find that erosion, and hence potentially exhumation, does not seem to be localized at a particular distance from the fault, as some tectonic and provenance studies have suggested. Instead, we find that superimposed on the primary tectonic control, there is an elevation/temperature control on erosion rates, which is probably transient and related to frost-cracking and glacial retreat.</p><p>Our results highlight the potential for <sup>10</sup>Be catchment-averaged erosion rates to provide insights into the magnitude and distribution of tectonic deformation rates, and the limitations that arise from transient erosion controls related to the seismic cycle and climate-modulated surface processes.</p><p> </p><p> </p>


1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1252
Author(s):  
Jan Barmuta ◽  
Krzysztof Starzec ◽  
Wojciech Schnabel

Based on the interpretation of 2D seismic profiles integrated with surface geological investigations, a mechanism responsible for the formation of a large scale normal fault zone has been proposed. The fault, here referred to as the Rycerka Fault, has a predominantly normal dip-slip component with the detachment surface located at the base of Carpathian units. The fault developed due to the formation of an anticlinal stack within the Dukla Unit overlain by the Magura Units. Stacking of a relatively narrow duplex led to the growth of a dome-like culmination in the lower unit, i.e., the Dukla Unit, and, as a consequence of differential uplift of the unit above and outside the duplex, the upper unit (the Magura Unit) was subjected to stretching. This process invoked normal faulting along the lateral culmination wall and was facilitated by the regional, syn-thrusting arc–parallel extension. Horizontal movement along the fault plane is a result of tear faulting accommodating a varied rate of advancement of Carpathian units. The time of the fault formation is not well constrained; however, based on superposition criterion, the syn -thrusting origin is anticipated.


Sign in / Sign up

Export Citation Format

Share Document