Event identification for test ban control

1970 ◽  
Vol 60 (5) ◽  
pp. 1521-1546 ◽  
Author(s):  
Ulf A. Ericsson

Abstract This paper describes a method to determine the usefulness of seismological event identification criteria for underground test ban control with or without on-site inspection. The method rests upon the notion that such control should be deterrent, by confronting a prospective violator with a certain disclosure probability at a politically determined level. Simple decision theory is then applied to the statistical properties of identification measures, to find the required compromise between a sufficient probability to disclose explosions and a not too high incidence of false alarms about earthquakes. A clean separation between the political requirements and the seismological capabilities is obtained. The latter are expressed by identification curves similar to the receiver operating characteristics curves employed in telecommunications analysis. The political requirements appear as geometrical conditions on the identification curves, expressing the required deterrence, the number of yearly explosions and earthquakes to be considered and the permitted number and quality of inspections, in the case of control with inspection. In the case of control without inspection, the acceptable rate of false alarms is included. The method also shows how identification criteria are most efficiently exploited. Application to some published observations shows identification by short-period body-wave magnitudes and long-period surface-wave magnitudes to be most efficient. It remains, however, to extend the analysis to weak events and low signal-to-noise ratios. For applications the acquisition of proper statistics is essential.

1976 ◽  
Vol 66 (5) ◽  
pp. 1485-1499 ◽  
Author(s):  
L. J. Burdick ◽  
George R. Mellman

abstract The generalized linear inverse technique has been adapted to the problem of determining an earthquake source model from body-wave data. The technique has been successfully applied to the Borrego Mountain earthquake of April 9, 1968. Synthetic seismograms computed from the resulting model match in close detail the first 25 sec of long-period seismograms from a wide range of azimuths. The main shock source-time function has been determined by a new simultaneous short period-long period deconvolution technique as well as by the inversion technique. The duration and shape of this time function indicate that most of the body-wave energy was radiated from a surface with effective radius of only 8 km. This is much smaller than the total surface rupture length or the length of the aftershock zone. Along with the moment determination of Mo = 11.2 ×1025 dyne-cm, this radius implies a high stress drop of about 96 bars. Evidence in the amplitude data indicates that the polarization angle of shear waves is very sensitive to lateral structure.


1974 ◽  
Vol 64 (3-1) ◽  
pp. 607-636
Author(s):  
Ola Dahlman ◽  
Hans Israelson ◽  
Atle Austegard ◽  
Gunnel Hörnström

abstract Seismic events reported to have occurred in the USSR in 1971 are studied to assess the seismic monitoring problem as it may occur in the context of a complete test-ban treaty. Available epicenter data of a total of 199 events, 180 earthquakes and 19 explosions, are presented. Focal depth estimates reported by the National Oceanic and Atmospheric Administration, U.S., and the Institute of Physics of the Earth, Moscow, are compared. Identification parameters determined using short- and long-period data from Hagfors Observatory and supplementary short-period data from the Yellowknife array station in Canada are presented. To study the combined operative efficiency and applicability of available identification parameters, the reported depth estimates and the identification data are assessed in a defined way.


1974 ◽  
Vol 64 (6) ◽  
pp. 1671-1683
Author(s):  
Eva Elvers

abstract A decision-theoretical model for seismic discrimination between earthquakes and underground nuclear explosions is developed. The influence of long- and short-period detection thresholds on the probabilities to identify explosions and to make false alarms is discussed. The model includes identification by negative evidence. This kind of identification is considered in the case when only short-period data are available and when the long-period signal amplitude is supposed to be less than or equal to the seismic noise amplitude. For one set of data—obtained from North American events at the Hagfors Observatory in Sweden—the applicability of the m(M)-method is increased about half a magnitude by including identification by negative evidence.


1975 ◽  
Vol 65 (3) ◽  
pp. 693-709 ◽  
Author(s):  
Otto W. Nuttli ◽  
So Gu Kim

abstract Body-wave magnitudes, mb, and surface-wave magnitudes, MS, were determined for approximately 100 Eurasian events which occurred during the interval August through December 1971. Body-wave magnitudes were determined from 1-sec P waves recorded by WWSSN short-period, vertical-component seismographs at epicentral distances greater than 25°. Surface-wave magnitudes were determined from 20-sec Rayleigh waves recorded by long-period, vertical-component WWSSN and VLPE seismographs. The earthquakes had mb values ranging from 3.6 to 5.7. Of 96 presumed earthquakes studied, 6 lie in or near the explosion portion of an mb:MS plot. The explosion mb:MS curve was obtained from seven Eurasian events which had mb values ranging from 5.0 to 6.2 and MS values from 3.2 to 5.1. All six anomalous earthquakes were located in the interior of Asia, in Tibet, and in Szechwan and Sinkiang provinces of China. In general, oceanmargin earthquakes were found to have more earthquake-like mb:MS values than those occurring in the continental interior. Neither focal depth nor focal mechanism can explain the anomalous events.


1977 ◽  
Vol 67 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Robert S. Hart ◽  
Rhett Butler ◽  
Hiroo Kanamori

abstract Observations of Love and Rayleigh waves on WWSSN and Canadian Network seismograms have been used to place constraints upon the source parameters of the August 1, 1975, Oroville earthquake. The 20-sec surface-wave magnitude is 5.6. The surface-wave radiation pattern is consistent with the fault geometry determined by the body-wave study of Langston and Butler (1976). The seismic moment of this event was determined to be 1.9 × 1025 dyne-cm by both time-domain and long-period (T ≥ 50 sec) spectral amplitude determinations. This moment value is significantly greater than that determined by short-period studies. This difference, together with the low seismic efficiency of this earthquake, indicates that the character of the source is intrinsically different at long periods from those aspects which dominate the shorter-period spectrum.


1971 ◽  
Vol 8 (2) ◽  
pp. 243-247
Author(s):  
Goetz G. R. Buchbinder

Two large unannounced events occurred at sea in aseismic areas in the Atlantic. Comparison of these with the announced event Chase III shows them to be explosions.Large explosions at sea may be recognized by the relatively small amplitude of long period surface waves with periods up to 10 s. Energy of longer periods is absent for events mb ≤ 5.5. The surface wave magnitudes for the events are at least 1.5 smaller at 10 s than those of underground explosions of equal mb, at 20 s they are at least 0.9 smaller. At longer periods the difference between body wave and surface wave magnitude is larger than 0.9 but larger explosions are needed to determine the separation. Underwater explosions on or near the continental shelf are very efficient in the generation of higher mode short period waves.


1973 ◽  
Vol 63 (3) ◽  
pp. 1119-1132
Author(s):  
D. H. Weichert ◽  
P. W. Basham

abstract The statistical capabilities of Ms:mb earthquake-explosion discrimination are derived from cumulative distributions of a linear discrimination parameter with confidence limits estimated by a distribution-free method. Cumulative discriminant distributions are shown to be preferable to previously employed “operating characteristics” because of difficulties of construction and interpretation of the latter. Three sets of Ms:mb discrimination data, two regional (North American and Eurasian) and one global, are employed to estimate false alarm probabilities at given “deterrence” (probability of correct identification of an explosion) for situations of both a ban and no ban on underground testing. In the hypothetical situation of monitoring a test ban using the Ms:mb criterion, reasonable deterrence (nominally 30 per cent, with a 95 per cent confidence that it is greater than 10 per cent) will be accompanied by a false alarm probability estimated from global data of about 0.1 per cent.


1993 ◽  
Vol 83 (4) ◽  
pp. 1167-1183 ◽  
Author(s):  
Bradley B. Woods ◽  
Sharon Kedar ◽  
Donald V. Helmberger

Abstract The mb:MS ratio determined by teleseismic observations has proven to be an effective discriminant, for explosive sources tend to be significantly richer in short-period energy than are earthquakes. Unfortunately, this method is limited by the detection threshold of teleseismic surface waves. However, recent advances in instrumentation allowing low amplitude surface wave measurements coupled with new analytical techniques make it feasible to use regional waveform data to determine the long-period source excitation level of low magnitude events. We propose using the ratio of ML (local magnitude) to M0 (scalar seismic moment) as an analogous regional discriminant. We applied this criterion to a data set of 299 earthquakes and 178 explosions and found that this ratio seems to be diagnostic of source type. For a given M0, the ML of an explosion is more than 0.5 magnitude units larger than that of an earthquake. This separation of populations with respect to source type can be attributed to the fact that ML is a short-period (1 Hz) energy measurement, whereas seismic moment is determined from long-period body wave phases (period > 4 s) and surface waves (10 to 40 sec). Using regional stations with sources 200 to 600 km away, the effective threshold for magnitude measurements for this discriminant is found to be ML = 3.1 for earthquakes and ML = 3.6 for explosions. This method does require the determination of regional crustal models and path calibrations from master events or by other means.


1960 ◽  
Vol 13 (1) ◽  
pp. 61-70
Author(s):  
D. E. Adams

Some general features of inertial and hybrid inertial systems are examined in relation to the navigational problem in its two essential aspects:(i) The present situation.(ii) The action required.As the fundamental D.R. system, inertial navigation has the virtue of independence but suffers from time-dependent errors. The engineering complexity and delicacy of adjustment of purely inertial navigation systems of long-period accuracy detract from its general application where other aids are available. On the other hand, increasingly stringent demands on flight-path computation and control justify an examination of the benefits to be derived from exploitation of the particular short-period merits of an inertial element used in conjunction with other aids.Principles of mixing are discussed in relation to quantity and quality of information inputs. Examples are then given of fallacies which may arise from the omission of essential information or from ignoring cross-coupling, and of the impracticability of mixed systems which assume too much of the quality of the input information.After summarizing the main features of inertial, radio/radar and astro aids, examples are given of practical and useful mixed systems which do not require the highest precision of inertial components. For example, auto-astro and inertia/doppler/ground fix contain the necessary and sufficient ingredients for combining long-period accuracy with short-term memory, speed of response in manoeuvre and instantaneous outputs such as are required for precise control and for flight path monitoring.Summarizing, it may be said that the value of true and hybrid inertial systems in the military context is evident. For more general application we may hope to see a gradual evolution of small, accurate and reliable central reference systems which will permit the employment of inertial methods suitable for mixing, especially with doppler in an accurate D.R. system. The outputs will be suitable not only for flight-path monitoring, but as providing information of a quality very well suited for integration into the control system and so into any overall system of flight automation.


1983 ◽  
Vol 73 (4) ◽  
pp. 1063-1076
Author(s):  
Thorne Lay ◽  
Donald V. Helmberger

abstract Relationships between travel-time and amplitude station anomalies are examined for short- and long-period SH waves and short-period P waves recorded at North American WWSSN and Canadian Seismic Network stations. Data for two azimuths of approach to North America are analyzed. To facilitate intercomparison of the data, the S-wave travel times and amplitudes are measured from the same records, and the amplitude data processing is similar for both P and S waves. Short-period P- and S-wave amplitudes have similar regional variations, being relatively low in the western tectonic region and enhanced in the shield and mid-continental regions. The east coast has intermediate amplitude anomalies and systematic, large azimuthal travel-time variations. There is a general correlation between diminished short-period amplitudes and late S-wave arrival times, and enhanced amplitudes and early arrivals. However, this correlation is not obvious within the eastern and western provinces separately, and the data are consistent with a step-like shift in amplitude level across the Rocky Mountain front. Long-period S waves show no overall correlation between amplitude and travel-time anomalies.


Sign in / Sign up

Export Citation Format

Share Document