scholarly journals Microalgae Grown in Cheese Whey and β-galactosidase Production

Author(s):  
Alessandra Bosso ◽  
Naiale Fernanda Da Silva Veloso ◽  
Camila Fernanda Alba ◽  
Josemeyre Bonifácio Da Silva ◽  
Luiz Rodrigo Ito Morioka ◽  
...  

O soro de queijo é o principal subproduto da indústria de laticínios e a alta demanda biológica e química de oxigênio (DBO e DQO) pode causar vários problemas ambientais. Estudos recentes apontam os potenciais usos biotecnológicos do soro de queijo, como o meio de fermentação, para a produção de β-galactosidase. A enzima é muito importante para hidrólise da lactose em galactose e glicose, monossacarídeos mais digeríveis pelo organismo humano. As microalgas podem produzir a β-galactosidase através de processos fermentativos. O objetivo da presente revisão é descrever sucintamente o progresso recente sobre o uso de microalgas na produção de β-galactosidase. No geral, o artigo resume o estado atual do conhecimento sobre microalgas, beta-galactosidase e soro de queijo como fonte de carbono para o crescimento de microalgas e dentro do conceito de economia circular. No entanto, ainda são necessários estudos adicionais sobre as melhores condições de cultivo de microalgas com o objetivo de produzir a enzima em questão.   Palavras-chave: Indústria de lacticínio. Biotecnologia. Economia Circular. Valor Agregado.   Abstract  Cheese whey is the main by-product of dairy industry and due to high biological and chemical oxygen demands (BOD and COD) can cause  several environmental problems. Recent studies have pointed the biotechnological potential uses of cheese whey such as fermentation medium to the β-galactosidase production. The enzyme is very important to breakdown the lactose into galactose and glucose, monosaccharide sugars more digestible than lactose. Microalgae can produce  β-galactosidase through fermentative processes. The purpose of the current mini-review is to succinctly describe recent progress about the use of microalgae to β-galactosidase production. Overall, the paper summarizes the current state of knowledge about microalgae, beta-galactosidase and cheese whey as carbon source to growing of microalgae and within circular economy concept. However, there is still a need for further studies regarding the best microalgae cultivation conditions with the objective of producing the enzyme in question.   Keywords: Dairy industry. Biotechnology. Circular Economy. Added Value.    

2021 ◽  
Author(s):  
Mohammed Amouri ◽  
Fayrouz Kaidi ◽  
Amel Ounnar ◽  
Majda Aziza

Abstract This paper aims to study a new growth media using cheese whey and drainage water from agriculture for indigenous microalgae cultivation for value-added product generation. In this context, four combinations are studied beside the BG11 as reference, where BG11/Cheese whey (60/40, %v/v), drainage water 100%, drainage water/Cheese whey (60/40, % v/v), and Cheese whey 100 % have been used. Moreover, investigated parameters are biomass dry weight, pH variation, total chlorophyll and carotenoid content. Results showed that used growth media have a significant impact on microaglae culture, particularly in terms of cells growth, pigment content and pH variation. Moreover, the mixture BG11/Cheese whey (60/40, %v/v) shows the best impact for total chlorophylls and carotenoids content. Likewise, the mixture cheese whey/drainage water (60/40, %v/v) presents a positive effect on pigments content. The use of cheese whey and drainage water lead to enhance the biomass and pigment production. This study showed that using agro-industrial C-rich wastes and drainage water enhanced microalgae biomass and pigment content, thus contributing to pollution abatement. This will contribute to both reducing the cost of production and resources recycling.


2021 ◽  
Author(s):  
Mohammed Amouri ◽  
Fayrouz Kaidi ◽  
Amel Ounnar ◽  
Majda Aziza

Abstract This paper aims to study a new growth media using cheese whey and drainage water from agriculture for indigenous microalgae cultivation for value-added product generation. In this context, four combinations are studied beside the BG11 as reference, where BG11/Cheese whey (60/40, %v/v), drainage water 100%, drainage water/Cheese whey (60/40, % v/v), and Cheese whey 100 % have been used. Moreover, investigated parameters are biomass dry weight, pH variation, total chlorophyll and carotenoid content. Results showed that used growth media have a significant impact on microaglae culture, particularly in terms of cells growth, pigment content and pH variation. Moreover, the mixture BG11/Cheese whey (60/40, %v/v) shows the best impact for total chlorophylls and carotenoids content. Likewise, the mixture cheese whey/drainage water (60/40, %v/v) presents a positive effect on pigments content. The use of cheese whey and drainage water lead to enhance the biomass and pigment production. This study showed that using agro-industrial C-rich wastes and drainage water enhanced microalgae biomass and pigment content, thus contributing to pollution abatement. This will contribute to both reducing the cost of production and resources recycling.


Author(s):  
Alessandra Bosso ◽  
Adriana Aparecida Bosso Tomal ◽  
Lucas Caldeirão Miranda ◽  
Josemeyre Bonifácio da Silva ◽  
Hélio Hiroshi Suguimoto ◽  
...  

  This study sought to create a better fermentation medium to maximize lactase production by Saccharomyces fragilis IZ 275 using different carbon sources, including reconstituted powdered cheese whey. A factorial design 24 was applied to evaluate the significant effects of variables which compose the fermentation medium. Then, a steepest descent-ascent design was applied to obtain the maximum activity. A Rotational Central Composite Design (RCCD) 24 was made to optimize the fermentation medium. We verified that the cheese whey, a by-product of the dairy industry, can be employed as an excellent fermentation medium by yeast, within the bioeconomy concept and used by the dairy industry as product with additional value. The employed methodology is an efficient tool in the optimization process for β-galactosidase production. In the optimized fermentation medium, the maximum production of β-galactosidase (54.68 U/mL) by S. fragilis IZ 275 is obtained with 14 g/L sucrose, 17.7 g/L reconstituted powdered cheese whey, 5.14 g/L yeast extract and 8.85 g/L peptone.


2021 ◽  
Vol 13 (11) ◽  
pp. 6007
Author(s):  
Stavros Ponis ◽  
Eleni Aretoulaki ◽  
Theodoros Nikolaos Maroutas ◽  
George Plakas ◽  
Konstantina Dimogiorgi

Additive Manufacturing (AM) is, undoubtedly, one of the most promising and potentially disruptive technologies of the Industry 4.0 era, able to transform the traditional manufacturing paradigm and fuel the generally accepted and necessary shift towards the conceptualisation, design and adoption of sustainable and circular business models. The objective of this paper is to contribute to the structure of the scientific field residing in the intersection of AM and Circular Economy (CE), by determining the status of its current state-of-the-art, proposing an initial typology in an attempt to contribute to the existing efforts of structuring this rather novice research area and pinpointing research gaps where more focus should be put, and highlighting areas with a significant potential for added-value future research. To that end, a sample of 206 papers, published from 2014 to 2020, was retrieved from the Scopus and Google Scholar databases. After studying and critically evaluating their content in full, contributions were classified into six thematic categories, providing a first typology of the current literature, followed by a detailed section highlighting and taxonomizing existing review studies. Next, contributions of the three categories of interest are discussed followed by a critical evaluation of the study’s contribution, inherent limitations and future research potential.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 9
Author(s):  
Franklin Chamorro ◽  
María Carpena ◽  
Bernabé Nuñez-Estevez ◽  
Miguel A. Prieto ◽  
Jesus Simal-Gandara

Currently, agricultural production generates large amounts of organic waste, both from the maintenance of farms and crops, and from the industrialization of the product. Generally, these wastes are accumulated in landfills or burned, sometimes causing environmental problems. However, many scientific studies suggest that these residues are rich in bioactive compounds, so these matrices could be revalued for their use in food, cosmetic, or pharmaceutical industries. In this way, the circular and sustainable economy is favored, while obtaining products with high added value. In this case, this approach is applied to the residues generated from kiwi production, since numerous studies have shown the high content of kiwi in bioactive compounds of interest, such as phenolic compounds, vitamins, and carotenoids. These compounds have been reported for their antioxidant, anti-inflammatory, and antimicrobial activities, among other beneficial properties for health such as its use as prebiotic. Therefore, this article reviews the potential of residues derived from industrial processing and agricultural maintenance of kiwi as promising matrices for the development of new nutraceutical, cosmetic, or pharmacological products, obtaining, at the same time, economic returns and a reduction of the environmental impact of this industry, attaching it to the perspective of the circular economy.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 116
Author(s):  
Daniela Coppola ◽  
Chiara Lauritano ◽  
Fortunato Palma Esposito ◽  
Gennaro Riccio ◽  
Carmen Rizzo ◽  
...  

Following the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns. For this reason, the disposal and recycling of these wastes has become a key issue to be resolved. With the growing attention of the circular economy, the exploitation of underused or discarded marine material can represent a sustainable strategy for the realization of a circular bioeconomy, with the production of materials with high added value. In this study, we underline the enormous role that fish waste can have in the socio-economic sector. This review presents the different compounds with high commercial value obtained by fish byproducts, including collagen, enzymes, and bioactive peptides, and lists their possible applications in different fields.


Author(s):  
Natalia Kordala ◽  
Małgorzata Lewandowska ◽  
Włodzimierz Bednarski

AbstractThe pretreatment of lignocellulosic material performed to improve substrate’s susceptibility to enzymatic hydrolysis is usually accompanied by reactions leading to the synthesis of compounds that inhibit the metabolic activity of microorganisms. Their toxicity is the main obstacle to the successful bioconversion of lignocellulosic hydrolysates. The identification of these inhibitors and the choice of the optimal detoxication method are crucial for the improving the efficiency of fermentation processes. Material rinsing with water after processing is a common detoxication practice. However, it generates material losses, thus affecting contents of saccharides in the fermentation medium, which may in turn trigger higher costs of lignocellulose conversion to ethanol and other products with a higher added value. A study was undertaken to determine the effect of selected methods for the detoxication of an enzymatic hydrolysate from Miscanthus giganteus on the fermentation efficiency of saccharide derivatives. The experiment conducted with Mucor rouxii DSM 1191 demonstrated the usability of the detoxication method based on the activated carbon. After 96-h fermentation of Miscanthus hydrolysates, the alcohol content in the post-reaction medium was higher by 14% than in the control experiment wherein the material was rinsed with water after pretreatment. The experiment carried out with Saccharomyces cerevisiae 7, NRRL 978 showed no positive impact of the alternative detoxication methods replacing material rinsing on the efficiency of ethanol synthesis. The highest concentration of this metabolite (2.04% (v/v)) was obtained in the experimental variant in which the mentioned operation was coupled with detoxication of hydrolysates using calcium hydroxide.


2021 ◽  
Vol 10 (12) ◽  
pp. e468101220727
Author(s):  
Maicon Jhonatan Bueno do Amaral Santos ◽  
Diva de Souza Andrade ◽  
Alessandra Bosso ◽  
Mayara Mari Murata ◽  
Luiz Rodrigo Ito Morioka ◽  
...  

Biotechnological processes with microalgae with the aim to achieve high biomass yields must choose the appropriate nutrients and physicochemical parameters, taking into account the specific characteristics of each species to determine the basic needs for its growth. In the present study, the better growth condition of Chlorella sorokiniana IPR 7104 was optimized to reach the maximum beta-galactosidase production. The cheese whey concentration (%), temperature (˚C) and pH were factors investigated and a Box-Behnken Design (BBD) approach was implemented using Statistica 7.0 software. We observed that the cultivation condition to Chlorella sorokiniana IPR 7104 was the heterotrophic, which showed the major enzymatic activity, consequently a lower residual lactose content. Under heterotrophic conditions (without light) the β-galactosidase activity increased linearly until the 8th day. Biomass production grew linearly on the 12th day. The microalgae consumed 89.6% of lactose in 3 days, showing a high capacity to metabolize this disaccharide, through β-galactosidase synthesis. The maximum β-galactosidase production by Chlorella sorokiniana IPR 7104, in heterotrophic conditions and using cheese whey as carbon source, is obtained using the following conditions: 30°C temperature, concentration of ethanol at 20% and time of 4 min.


2012 ◽  
Vol 524-527 ◽  
pp. 3190-3201
Author(s):  
Yan Hong Hao ◽  
Ling Mei Wang ◽  
Li Xia Qiu

Coal resource utilization system, based on circular economy, is an opening, complex and time-varying system. It composes of subsystems such as industry, population, economy and environment etc. Taking the industry subsystem as prime object, this paper builds its system dynamics model adopting the system dynamics method based on full life cycle. The adjustment parameters such as utilization rate of by-product of mining, the proportion of coal use in each industry and waste recycling rate etc. were confirmed. As a case of coal utilization system being designed, thirteen development projects belong to two types of scenarios were run on the model. The efficacy coefficient method was applied to analyze the simulation results and determine the comparatively best project of coal resource utilization system for the first time. The results indicate that the C4 among them are the best project comparatively, its waste emission is the least, and the benefits of economy, environment and society are the maximum. Research shows that extending industrial chain, increasing production proportion of high added-value product and raising waste recycling rate are beneficial to decrease coal-mining quantity for unit output value, protect coal resource and achieve sustainable development, namely that adopting circular economy development pattern is undoubtedly worthy of advocating for sustainable development of economy, environment and society.


2021 ◽  
Vol 66 (3) ◽  
pp. 19-32
Author(s):  
Carmen Nastase ◽  
Daniela Muscal (Avasiloaei)

"ABSTRACT. The circular economy is an alternative economic model to the current linear economy. The main feature of the circular economy is to preserve the value of resources. The circular economy generates indisputable environmental benefits, social benefits and added value for companies, aspects necessary to guarantee resource sustainability and ecological diversity in a globalized, complex and often unpredictable global context. Despite the fact that tourism plays an important role in the economic development of tourist regions and in the integration of these economies in the process of globalization, it puts great pressure on natural resources and the environment. Tourism activity generates environmental impacts and economic impacts. The aim of this paper is to analyze the future tendencies of tourism, how the circular economy can create value for the tourism sector and the steps to be followed to create a sustainable model. The society we live in has exhausted the resources needed to meet the future needs of an increasingly affected planet. Tourism is a sector sensitive environmentally, because while exploiting resources for its economic development, compromising their future growth. For this reason, it is very important to adopt tourism practices that promote respect for the planet - Earth, because we destroy our home and today we are already living the consequences and the circular economy is born of the real need to save the planet we live on. Change is the key to a sustainable model. Today there are endless opportunities, we need to rethink our current system and open up to new perspectives through innovation and creativity. Keywords: Circular economy, Sustainable tourism, Resources, Tourism JEL classification: Z32, L83, Q01, Q56 "


Sign in / Sign up

Export Citation Format

Share Document