scholarly journals ANALYSIS OF INCREASING THE FRICTION FORCE OF THE ROBOT JAWS BY ADDING 3D PRINTED FLEXIBLE INSERTS

2021 ◽  
Vol 2021 (6) ◽  
pp. 5322-5326
Author(s):  
JIRI SUDER ◽  
◽  
TOMAS KOT ◽  
ALAN PANEC ◽  
MICHAL VOCETKA ◽  
...  

3D printing technology plays a key role in the production of prototypes and final functional parts. The ability to produce almost any shape using this technology in combination with lightweight materials is often used to minimise the weight of the designed components. However, for some applications, such as robot gripper jaws, conventional most commonly used materials, such as PLA, may be unsuitable due to their low coefficient of friction on the material of the manipulated object, which in some cases may cause the object to slip in the robot jaws. This article describes a technical problem from practice, where a manipulated object made of steel material slipped in the printed PLA jaws of the robot during its working cycle. This work is devoted to increasing the friction force of the robot jaws by adding 3D printed soft inserts. Two insert surface shapes made of two flexible materials TPU 30D and TPE 88 are tested. The increase in friction force is measured on a measuring device with an industrial robot and a force measuring sensor. The most suitable type of inserts and material is then tested on a collaborative robot at its required working cycle. The results of this experiment are intended to help designers as a source of information or inspiration in designing similar applications.

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1100
Author(s):  
Adam Steckiewicz ◽  
Kornelia Konopka ◽  
Agnieszka Choroszucho ◽  
Jacek Maciej Stankiewicz

In this article, novel 3D printed sensors for temperature measurement are presented. A planar structure of the resistive element is made, utilizing paths of a conductive filament embedded in an elastic base. Both electrically conductive and flexible filaments are used simultaneously during the 3D printing procedure, to form a ready–to–use measuring device. Due to the achieved flexibility, the detectors may be used on curved and irregular surfaces, with no concern for their possible damage. The geometry and properties of the proposed resistance detectors are discussed, along with a printing procedure. Numerical models of considered sensors are characterized, and the calculated current distributions as well as equivalent resistances of the different structures are compared. Then, a nonlinear influence of temperature on the resistance is experimentally determined for the exemplary planar sensors. Based on these results, using first–order and hybrid linear–exponential approximations, the analytical formulae are derived. Additionally, the device to measure an average temperature from several measuring surfaces is considered. Since geometry of the sensor can be designed utilizing presented approach and printed by applying fused deposition modeling, the functional device can be customized to individual needs.


2019 ◽  
Vol 299 ◽  
pp. 02008 ◽  
Author(s):  
Miriam Matúšová ◽  
Marcela Bučányová ◽  
Erika Hrušková

Rapidly changing user requirements, improving of quality of life or increased safety at work are allarguments for introducing flexible automation that replaces strenuous or dangerous work. Industrial robots with adaptive directing are now deployed to most industries due to their large range of uses. Theirmain addition for manufacturing is to eliminate downtime of complete operating and manipulating production process, to make easier all particular operation in accordance with ergonomics. The paper describescomparing between conventional industrial robot and collaborative robot.


Author(s):  
Jun Huang ◽  
Duc Truong Pham ◽  
Yongjing Wang ◽  
Mo Qu ◽  
Chunqian Ji ◽  
...  

Human–robot collaborative disassembly is an approach designed to mitigate the effects of uncertainties associated with the condition of end-of-life products returned for remanufacturing. This flexible semi-autonomous approach can also handle unpredictability in the frequency and numbers of such returns as well as variance in the remanufacturing process. This article focusses on disassembly, which is the first and arguably the most critical step in remanufacturing. The article presents a new method for disassembling press-fitted components using human–robot collaboration based on the active compliance provided by a collaborative robot. The article first introduces the concepts of human–robot collaborative disassembly and outlines the method of active compliance control. It then details a case study designed to demonstrate the proposed method. The study involved the disassembly of an automotive water pump by a collaborative industrial robot working with a human operator to take apart components that had been press-fitted together. The results show the feasibility of the proposed method.


2020 ◽  
Vol 10 (23) ◽  
pp. 8714
Author(s):  
Michal Vocetka ◽  
Róbert Huňady ◽  
Martin Hagara ◽  
Zdenko Bobovský ◽  
Tomáš Kot ◽  
...  

The article aims to prove the hypothesis, that an approach direction influences repeatability at target point of a trajectory. Unlike most researches that deal with absolute accuracy, this paper is focused on determining the achievable repeatability and the influence of the direction of approach on it. To prove the hypothesis, several measurements are performed under different conditions, on industrial robot ABB IRB1200. To verify and confirm the result obtained from the resolvers located on the individual axes of the robot, the measurements are replicated using high-speed digital image correlation cameras. Using an external measuring device, the real repeatability of the robot endpoint is determined. The measurement proved the correctness of the hypothesis, i.e., the dependence of the approach direction on repeatability was proved. Furthermore, real deviations were measured and the extent of this influence on the robot repeatability was determined.


2020 ◽  
Author(s):  
Adam Tejkl ◽  
Petr Kavka

<p>Research of the evaporation from the water surface is curtailing for measuring the water balance in small catchments.</p><p>An ongoing project aims to develop a simple and reliable, easy to reproduce evaporation measuring device. A core part of the device is measuring the water level in the field in cheap form. 3D printed design in combination with open-source cheap electronics is utilized. Methodology and results of the ongoing research project will be presented. The project investigates the affordable and simple technical measures that have the potential to increase the number of opportunities for the measuring of evaporation.</p><p>Continuously the theories are developed and tested, subsequently, conclusions are implemented into the next generation of the device. Five generations of 3D printed part have been done, and now the research focus on the electrical and software part of the device. Durability and reliability of the device are tested in the field, in three locations. All plots are also frequently checked by research staff and data is saved and later compared with data measured by the device. Refilling of the evaporation pan is also done by research staff.</p><p>Prototype 3 used the experience of all previous prototypes. The construction is equipped with 5 sets of electrodes, each with a measuring range of 10 mm. The total measuring range is 50 mm. The whole structural part of prototype 3 is designed as a printout on a 3D printer, electrodes are printed from a conductive material. Above the electrodes, there is a printed circuit board carrying the microelectronics control module.</p><p>The principle of measurement consists of gradual interrogation of the set of electrodes, a subsequent reversal of polarity and repeated interrogation. This cycle is repeated several times and the result is averaged, then the next set is measured. The polarity reversal is controlled by the relay. Thanks to the use of printed circuit board it was possible to simplify the device, so only 7 wires, one analog output, polarity reversal control and supply wire to 5 sets of electrodes are led from the whole device.</p><p>An important step in the evaluation of the obtained data (the values of current passed through the water), is its analysis. Because values are read very often they differ only slightly. A commonly used vapor unit is mm of water column per day. It is, therefore, necessary to analyze a long time series, at least longer than one day, and covering the entire day from 00:00 to 23:59.</p><p>The testing sites are the grounds of the CTU Faculty of Civil Engineering in Dejvice, the experimental sites of the CULS in Prague Suchdol and the Water Research Institute in Prague Podbaba.</p><p>The research is funded by the Technological Agency of the Czech Republic (research project TJ02000351 - Development of Tools and Methods Improving Estimation of annual Evaporation Balance).</p>


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5871
Author(s):  
Gašper Škulj ◽  
Rok Vrabič ◽  
Primož Podržaj

Increasing the accessibility of collaborative robotics requires interfaces that support intuitive teleoperation. One possibility for an intuitive interface is offered by wearable systems that measure the operator’s movement and use the information for robot control. Such wearable systems should preserve the operator’s movement capabilities and, thus, their ability to flexibly operate in the workspace. This paper presents a novel wireless wearable system that uses only inertial measurement units (IMUs) to determine the orientation of the operator’s upper body parts. An algorithm was developed to transform the measured orientations to movement commands for an industrial collaborative robot. The algorithm includes a calibration procedure, which aligns the coordinate systems of all IMUs, the operator, and the robot, and the transformation of the operator’s relative hand motions to the movement of the robot’s end effector, which takes into account the operator’s orientation relative to the robot. The developed system is demonstrated with an example of an industrial application in which a workpiece needs to be inserted into a fixture. The robot’s motion is compared between the developed system and a standard robot controller. The results confirm that the developed system is intuitive, allows for flexible control, and is robust enough for use in industrial collaborative robotic applications.


2020 ◽  
Vol 10 (12) ◽  
pp. 4329 ◽  
Author(s):  
Rodrigo Pérez-Ubeda ◽  
Ranko Zotovic-Stanisic ◽  
Santiago C. Gutiérrez

Due to the elasticity of their joints, collaborative robots are seldom used in applications with force control. Besides, the industrial robot controllers are closed and do not allow the user to access the motor torques and other parameters, hindering the possibility of carrying out a customized control. A good alternative to achieve a custom force control is sending the output of the force regulator to the robot controller through motion commands (inner/outer loop control). There are different types of motion commands (e.g., position or velocity). They may be implemented in different ways (Jacobian inverse vs. Jacobian transpose), but this information is usually not available for the user. This article is dedicated to the analysis of the effect of different inner loops and their combination with several external controllers. Two of the most determinant factors found are the type of the inner loop and the stiffness matrix. The theoretical deductions have been experimentally verified on a collaborative robot UR3, allowing us to choose the best behaviour in a polishing operation according to pre-established criteria.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3380 ◽  
Author(s):  
Martin Gaudreault ◽  
Ahmed Joubair ◽  
Ilian Bonev

This work shows the feasibility of calibrating an industrial robot arm through an automated procedure using a new, low-cost, wireless measuring device mounted on the robot’s flange. The device consists of three digital indicators that are fixed orthogonally to each other on an aluminum support. Each indicator has a measuring accuracy of 3 µm. The measuring instrument uses a kinematic coupling platform which allows for the definition of an accurate and repeatable tool center point (TCP). The idea behind the calibration method is for the robot to bring automatically this TCP to three precisely-known positions (the centers of three precision balls fixed with respect to the robot’s base) and with different orientations of the robot’s end-effector. The self-calibration method was tested on a small six-axis industrial robot, the ABB IRB 120 (Vasteras, Sweden). The robot was modeled by including all its geometrical parameters and the compliance of its joints. The parameters of the model were identified using linear regression with the least-square method. Finally, the performance of the calibration was validated with a laser tracker. This validation showed that the mean and the maximum absolute position errors were reduced from 2.628 mm and 6.282 mm to 0.208 mm and 0.482 mm, respectively.


Author(s):  
Romain Farel ◽  
Selma Kchir ◽  
Xavier Lamy ◽  
Mathieu Grossard

Automation of manufacturing process with robots is an industrial challenge, generally evaluated by the Return On Investment (ROI) that such a transformation could generate. However, the automation has a considerable cost particularly for SMEs, which makes a barrier to access and limits the motivation of facilitating the manual work of the operators, despite of nonergonomic and risky situations. In this study, supported by the European project HORSE, we went through the development of a robotic solution to assist the operator in the manufacturing. This component called programming-by-demonstration is integrated in both main categories of automation: industrial robot and collaborative robot (cobot). Both applications are tested and evaluated in a real manufacturing task (cutting cast pieces from foundry) and evaluated by the industrial end-user. The paper states on the application of the developed component, and concludes with the lesson learned.


Sign in / Sign up

Export Citation Format

Share Document