Potencial terapéutico de la melatonina en la fibrosis hepática: estudios "in vivo" e "in vitro" de los mecanismos moleculares implicados = Therapeutic potential of mealtonin in hepatic fibrosis: "in vivo" e "in vitro" studies of the molecular mechanisms involved

2019 ◽  
Author(s):  
Bárbara González Fernández
2021 ◽  
Vol 12 ◽  
Author(s):  
Yuan Cai ◽  
Kewa Gao ◽  
Bi Peng ◽  
Zhijie Xu ◽  
Jinwu Peng ◽  
...  

Alantolactone (ALT) is a natural compound extracted from Chinese traditional medicine Inula helenium L. with therapeutic potential in the treatment of various diseases. Recently, in vitro and in vivo studies have indicated cytotoxic effects of ALT on various cancers, including liver cancer, colorectal cancer, breast cancer, etc. The inhibitory effects of ALT depend on several cancer-associated signaling pathways and abnormal regulatory factors in cancer cells. Moreover, emerging studies have reported several promising strategies to enhance the oral bioavailability of ALT, such as combining ALT with other herbs and using ALT-entrapped nanostructured carriers. In this review, studies on the anti-tumor roles of ALT are mainly summarized, and the underlying molecular mechanisms of ALT exerting anticancer effects on cells investigated in animal-based studies are also discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shihua Wu ◽  
Feng Liu ◽  
Liming Xie ◽  
Yaling Peng ◽  
Xiaoyuan Lv ◽  
...  

Understanding the molecular mechanisms underlying gastric cancer progression contributes to the development of novel targeted therapies. In this study, we found that the expression levels of miR-125b were strongly downregulated in gastric cancer and associated with clinical stage and the presence of lymph node metastases. Additionally, miR-125b could independently predict OS and DFS in gastric cancer. We further found that upregulation of miR-125b inhibited the proliferation and metastasis of gastric cancer cells in vitro and in vivo. miR-125b elicits these responses by directly targeting MCL1 (myeloid cell leukemia 1), which results in a marked reduction in MCL1 expression. Transfection of miR-125b sensitizes gastric cancer cells to 5-FU-induced apoptosis. By understanding the function and molecular mechanisms of miR-125b in gastric cancer, we may learn that miR-125b has the therapeutic potential to suppress gastric cancer progression and increase drug sensitivity to gastric cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Rajib Hossain ◽  
Cristina Quispe ◽  
Jesús Herrera-Bravo ◽  
Md. Shahazul Islam ◽  
Chandan Sarkar ◽  
...  

Lasia spinosa (L.) is used ethnobotanically for the treatment of various diseases, including rheumatoid arthritis, inflammation of the lungs, bleeding cough, hemorrhoids, intestinal diseases, stomach pain, and uterine cancer. This review is aimed at summarizing phytochemistry and pharmacological data with their molecular mechanisms of action. A search was performed in databases such as PubMed, Science Direct, and Google Scholar using the keywords: “Lasia spinosa,” then combined with “ethnopharmacological use,” “phytochemistry,” and “pharmacological activity.” This updated review included studies with in vitro, ex vivo, and in vivo experiments with compounds of known concentration and highlighted pharmacological mechanisms. The research results showed that L. spinosa contains many important nutritional and phytochemical components such as alkanes, aldehydes, alkaloids, carotenoids, flavonoids, fatty acids, ketones, lignans, phenolics, terpenoids, steroids, and volatile oil with excellent bioactivity. The importance of this review lies in the fact that scientific pharmacological evidence supports the fact that the plant has antioxidant, anti-inflammatory, antimicrobial, cytotoxic, antidiarrheal, antihelminthic, antidiabetic, antihyperlipidemic, and antinociceptive effects, while protecting the gastrointestinal system and reproductive. Regarding future toxicological and safety data, more research is needed, including studies on human subjects. In light of these data, L. spinosa can be considered a medicinal plant with effective bioactives for the adjuvant treatment of various diseases in humans.


2020 ◽  
Vol 27 (6) ◽  
pp. 983-996 ◽  
Author(s):  
Md. Asaduzzaman Khan ◽  
Mousumi Tania

Background: Cordycepin is a nucleotide analogue from Cordyceps mushrooms, which occupies a notable place in traditional medicine. Objective: In this review article, we have discussed the recent findings on the molecular aspects of cordycepin interactions with its recognized cellular targets, and possible mechanisms of its anticancer activity. Methods: We have explored databases like pubmed, google scholar, scopus and web of science for the update information on cordycepin and mechanisms of its anticancer activity, and reviewed in this study. Results: Cordycepin has been widely recognized for its therapeutic potential against many types of cancers by various mechanisms. More specifically, cordycepin can induce apoptosis, resist cell cycle and cause DNA damage in cancer cells, and thus kill or control cancer cell growth. Also cordycepin can induce autophagy and modulate immune system. Furthermore, cordycepin also inhibits tumor metastasis. Although many success stories of cordycepin in anticancer research in vitro and in animal model, and there is no successful clinical trial yet. Conclusion: Ongoing research studies have reported highly potential anticancer activities of cordycepin with numerous molecular mechanisms. The in vitro and in vivo success of cordycepin in anticancer research might influence the clinical trials of cordycepin, and this molecule might be used for development of future cancer drug.


2018 ◽  
Vol 119 (5) ◽  
pp. 4021-4037 ◽  
Author(s):  
Veerasamy Kanimozhi ◽  
Kandasamy Palanivel ◽  
Mohammad A. Akbarsha ◽  
Balamuthu Kadalmani

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Seon Ok ◽  
Sa-Rang Oh ◽  
Tae-Sung Jung ◽  
Sang-Ok Jeon ◽  
Ji-wook Jung ◽  
...  

We investigated the cellular and molecular mechanisms mediating the effects ofAngelica gigasNakai extract (AGNE) through the mitogen-activated protein kinases (MAPKs)/NF-κB pathway usingin vitroandin vivoatopic dermatitis (AD) models. We examined the effects of AGNE on the expression of proinflammatory cytokines and chemokines in human mast cell line-1 (HMC-1) cells. Compound 48/80-induced pruritus and 2,4-dinitrochlorobenzene- (DNCB-) induced AD-like skin lesion mouse models were also used to investigate the antiallergic effects of AGNE. AGNE reduced histamine secretion, production of proinflammatory cytokines including interleukin- (IL-) 1β, IL-4, IL-6, IL-8, and IL-10, and expression of cyclooxygenase- (COX-) 2 in HMC-1 cells. Scratching behavior and DNCB-induced AD-like skin lesions were also attenuated by AGNE administration through the reduction of serum IgE, histamine, tumor necrosis factor-α(TNF-α), IL-6 levels, and COX-2 expression in skin tissue from mouse models. Furthermore, these inhibitory effects were mediated by the blockade of the MAPKs and NF-κB pathway. The findings of this study proved that AGNE improves the scratching behavior and atopy symptoms and reduces the activity of various atopy-related mediators in HMC-1 cells and mice model. These results suggest the AGNE has a therapeutic potential in anti-AD.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Shuai Huang ◽  
Bihui Cao ◽  
Jinling Zhang ◽  
Yunfei Feng ◽  
Lu Wang ◽  
...  

AbstractCucurbitacin B (CuB) is a widely available triterpenoid molecule that exhibits various biological activities. Previous studies on the anti-tumour mechanism of CuB have mostly focused on cell apoptosis, and research on the ferroptosis-inducing effect has rarely been reported. Herein, we first discovered the excellent cytotoxicity of CuB towards human nasopharyngeal carcinoma cells and elucidated its potential ferroptosis-inducing mechanisms. Morphology alterations of mitochondrial ultrastructure, as observed via transmission electron microscopy, showed that CuB-treated cells undergo ferroptosis. CuB caused intracellular accumulation of iron ions and depletion of glutathione. Detailed molecular mechanism investigation confirmed that CuB both induced widespread lipid peroxidation and downregulated the expression of GPX4, ultimately initiating a multipronged mechanism of ferroptosis. Furthermore, CuB exhibited anti-tumour effects in vitro by inhibiting cellular microtubule polymerization, arresting cell cycle and suppressing migration and invasion. Finally, CuB significantly inhibited tumour progression without causing obvious side effects in vivo. Altogether, our study highlighted the therapeutic potential of CuB as a ferroptosis-inducing agent for nasopharyngeal cancer, and it provided valuable insights for developing effective anti-tumour agents with novel molecular mechanisms derived from natural products.


2020 ◽  
Vol 11 ◽  
Author(s):  
Md. Habibur Rahman ◽  
Rokeya Akter ◽  
Tanima Bhattacharya ◽  
Mohamed M. Abdel-Daim ◽  
Saad Alkahtani ◽  
...  

Alzheimer’s disease (AD) is a progressive cortex and hippocampal neurodegenerative disease which ultimately causes cognitively impaired decline in patients. The AD pathogen is a very complex process, including aggregation of Aβ (β-amyloid peptides), phosphorylation of tau-proteins, and chronic inflammation. Exactly, resveratrol, a polyphenol present in red wine, and many plants are indicated to show the neuroprotective effect on mechanisms mostly above. Resveratrol plays an important role in promotion of non-amyloidogenic cleavage of the amyloid precursor protein. It also enhances the clearance of amyloid beta-peptides and reduces the damage of neurons. Most experimental research on AD and resveratrol has been performed in many species, both in vitro and in vivo, during the last few years. Nevertheless, resveratrol’s effects are restricted by its bioavailability in the reservoir. Therefore, scientists have tried to improve its efficiency by using different methods. This review focuses on recent work done on the cell and animal cultures and also focuses on the neuroprotective molecular mechanisms of resveratrol. It also discusses about the therapeutic potential onto the treatment of AD.


Author(s):  
Roger Belizaire ◽  
Sebastian H.J. Koochaki ◽  
Namrata D. Udeshi ◽  
Alexis Vedder ◽  
Lei Sun ◽  
...  

AbstractCBL encodes an E3 ubiquitin ligase and signaling adaptor that acts downstream of cytokine receptors. Recurrent CBL mutations occur in myeloid malignancies, but the mechanism by which these mutations drive oncogenesis remains incompletely understood. Here we performed a series of studies to define the phosphoproteome, CBL interactome and molecular mechanisms of signaling activation in cells expressing an allelic series of CBL mutants. Our analyses revealed that increased LYN activation and interaction with mutant CBL are key drivers of enhanced PIK3R1 recruitment and downstream PI3K/AKT signaling in CBL-mutant cells. Furthermore, we demonstrated in vitro and in vivo efficacy of LYN inhibition by dasatinib in CBL-mutant cell lines and primary chronic myelomonocytic leukemia cells. Overall, our data provide rationale for exploring the therapeutic potential of LYN inhibition in patients with CBL-mutated myeloid malignancies.Statement of SignificanceWe investigated the oncogenic mechanisms of myeloid malignancy-associated CBL mutations by mass spectrometry-based proteomics and interactomics. Our findings indicate that increased LYN kinase activity in CBL-mutant cells stimulates PI3K/AKT signaling, revealing opportunities for the use of targeted inhibitors in CBL-mutated myeloid malignancies.


Sign in / Sign up

Export Citation Format

Share Document