scholarly journals Assessment of Water Quality Index of Groundwater Resources in Iwo Local Government Area, Osun State, Southwestern Nigeria

2021 ◽  
Vol 8 (1) ◽  
pp. 27-00
Author(s):  
Y. O. Adetona ◽  
K. T. Oladepo

This study assessed the groundwater quality of 30 selected wells and boreholes in Iwo Local Government Area, Osun State, Nigeria. Groundwater sources were randomly stratified and identified according to the 15 political wards using hand-held GPS equipment. The sources were sampled during the rainy season (October) and dry season (January) to determine water quality. The physico-chemical and microbiological parameters of the water samples such as temperature, turbidity, total suspended solids, pH, electrical conductivity, total dissolved solids, total alkalinity, total hardness, chloride, sulphate, nitrate, phosphate, magnesium, calcium, iron, zinc, lead, manganese, cadmium, chromium, and total coliform were determined using standard methods. The results showed that total hardness, calcium, cadmium, sulphate, and phosphate had mean values above the acceptable values for rainy and dry seasons; their mean values in mg/l for the rainy season were 252.933, 98.267, 0.018, 305.119, and 1.762, respectively, while their values for the dry season were 299.633, 115.831, 0.020, 285.695 and 1.705, respectively. The Water Quality Index (WQI) values showed that 30% of the selected groundwater sources were fit for consumption while 60% were poor and 10% were unfit for drinking during the rainy season. During the dry season, 50% of the groundwater sources were fit for consumption, 40% were poor, and 10% were unfit for consumption.

2016 ◽  
Vol 11 (2) ◽  
pp. 537-543
Author(s):  
Manchala Lingaswamy ◽  
Praveen Saxena

The present study was carried out to assess the water quality of three lakes of Hyderabad, Telangana State, India viz., Hussain Sagar, Fox Sagar and Kattamysamma Lake by using water quality index (WQI). For this study systematic sampling has been carried out by collecting sixteen samples from each lake. The collected samples were analyzed for physico-chemical parameters like pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness (TH), Total Alkalinity (TA), Sodium (Na+), Potassium (K+), Calcium (Ca2+), Magnesium (Mg2+), Nitrates (NO32-), Sulphates (SO42-), Fluoride (F-) and Chloride (Cl-) according to Standard Methods for the Examination of Water and Wastewater (APHA 2005) and Central Pollution Control Board (CPCB) guide manual: Water and Waste water analysis. The results were compared with water quality guidelines for drinking purpose (BIS 2012). The mean values of most water quality parameters were significantly higher than the accept limits in all three lakes.Ten important water variables were chosen to calculate Water Quality Index (WQI). All the three lakes fall under unsuitable for drinking purpose (>100) according to WQI scale.


2020 ◽  
Vol 53 (2C) ◽  
pp. 87-104
Author(s):  
Kaiwan Fatah

Studying groundwater quality in arid and semi-arid regions is essential significant because it is used as a foremost alternative source for various purposes (human and animal consumption, economic, agriculture and irrigation). Geographic Information System and Water Quality Index techniques were utilized for visualizing and evaluating the variations of groundwater quality in the studied area. Total twelve wells were sampled and twelve groundwater quality (chemical) parameters; pH, Total Alkalinity, Total Hardness (TH), Total Dissolved Solid (TDS), Electrical Conductivity (Ec), Potassium (K), Nitrate (NO3), Sulfate (SO4), Chloride (Cl), Calcium (Ca), Magnesium (Mg) and Sodium (Na) were analyzed in the laboratory. Inverse Distance Weighted technique was used as a useful tool to create and anticipate spatial variation maps of the chemical parameters. Predicting or anticipating other areas not measured, identifying them and making use of them in the future without examining samples. The results of this research showed that 8.3% of the studied wells have excellent groundwater quality, and almost sampling wells about 75% found in good groundwater quality, while findings of groundwater quality of 16.7% studied wells belong to poor water quality due to standards of Water Quality Index. Moreover, spatial analysis in term of groundwater quality map showed that Excellent groundwater quality was detected in well 3, very good groundwater potential was noticed in six studied wells (wells 2, 6, 8, 10, 11 and 12), and other sampling wells (wells 4 and 7) were observed as good groundwater quality, while poor water quality was observed in wells (well 1 and 5). Hence, spatial distribution maps showed that the almost groundwater quality in the area about 1046.82 km² (99.04%) are suitable for drinking purpose, whereas proximate 10.18 km² (0.96%) are observed as poor water quality and inappropriate for consumptions especially in the southern part of the area.


2017 ◽  
Vol 15 (1) ◽  
pp. 42-56
Author(s):  
S A ISHOLA ◽  
V MAKINDE ◽  
I C OKEYODE ◽  
F G AKINBORO ◽  
H AYEDUN ◽  
...  

Pollution of wells and borehole water, either from point or non-point sources, has become a matter of health concern both in urban and rural areas. Groundwater is tapped for domestic uses through the con-struction of hand dug wells and boreholes. However, while providing an alternative to the public water supply sources; most of the boreholes are often located too close to possible contamination sources. Various land use and human activities such as solid waste landfills, cemetery and animal wastes, among others can result in ground water contamination. In an open or buried dumping solid waste or sanitary landfill, the organic and inorganic by-products resulting from the decomposition of wastes are leached out by the infiltration of rainfall. A release of leachate to the surrounding soil without proper collection and treatment could contaminate groundwater resources. Many of the wells and boreholes in the study area were found to be indiscriminately located and scattered among such impairing lands/features. This study was therefore aimed at assessing the pollution hazards and vulnerability of groundwater resource in Abe-okuta North Local Government Area (LGA) by sampling some boreholes from selected locations in the area. Water samples were collected and analyzed for water quality parameters using standard proce-dures. The parameters determined were Turbidity, Temperature, Electrical Conductivity (EC), pH, Total Dissolved Solids (TDS) Total Suspended Solids (TSS), Total Solids (TS), Total hardness, cations {Potassium (K), Sodium (Na), Calcium (Ca), Magnesium (Mg), Manganese (Mn), iron (Fe)}, anions {Chloride (Cl-), Nitrate (NO3-), Sulphate (SO42-), Phosphate (PO43-)}, and heavy metals {lead (Pb2+), Zinc (Zn2+), Copper (Cu2+)}. Results were subjected to statistical evaluations using SPSS 18.0 for descriptive statistics and Analysis of Variance (ANOVA). It was observed that the elemental parameters in the bore-holes sampled have mean values of the concentrations of Fe2+, Na+, Cl- , SO42-, Pb2+, Mn2+, Cu2+ and Zn2+ higher during the wet season relative to dry season. For the physico-chemical parameters, it was equally observed that parameters such as EC, TDS, TS, TSS were higher during the wet season than dry season while turbidity, temperature, pH and total hardness were higher during dry season than in the wet season. Water quality parameters such as Fe2+, Pb2+, NO3-, and EC have mean values greater than World Health Organization and NESREA maximum permissible standards for drinking water. Elevated values of these parameters are of great concern to public health when the water from these boreholes is consumed without treatment by people. It is recommended that well and borehole waters in this area be adequately treated before consumption using advanced inorganic removal techniques such as Nano-filtration and Reverse Osmosis to safeguard human health in the study area.Keywords: Boreholes, pollution, water quality, public health, physico-chemical


Author(s):  
Obaje Daniel Opaluwa ◽  
Yahaya Mohammed ◽  
Suwabat Mamman ◽  
Ademu Tanko Ogah ◽  
Danjuma Ali

Water quality index and heavy metal contents of underground water sources in Doma Local Government Area, Nasarawa State, Nigeria was assessed to ascertain the suitability of the water for domestic purpose. Physicochemical parameters; temperature, turbidity, TDS, TSS, pH, EC, total hardness, alkalinity, chloride, nitrate and sulphates in the water samples were determined using standard methods of analysis. The water quality index (WQI) was also evaluated using known standard method. The heavy metal contents were determined using atomic absorption spectrophotometric method. The results of the physicochemical analyses shows that in borehole and hand dug well water, the respective mean values were temperature (27.11±0.45 and 27.41±0.55 °C), turbidity (1.51±0.54 and 2.56±1.04 NTU), TDS (230.00±87.75 and 358.67±91.46 mg/dm3), TSS (3.64±1.25 and 4.17±4.17 mg/dm3), pH (5.63±0.69 and 6.60±0.95), EC 277.16 and 296.29±26.52 µS/cm), total hardness (90.00±15.55 and 125.13±16.33 mg/dm3), alkalinity (8.87±.083 and 9.24±1.08 mg/dm3), chloride (20.59±14.62 and 21.22±10.13 mg/dm3, nitrate (0.024±0.04 and 0.01±0.01 mg/dm3) and sulphates (1.05±0.74 and 2.09±0.45 mg/dm3). It was revealed that all the physicochemical parameters for both borehole and hand dug well water had values that were within the standard permissible values recommended by regulatory bodies, NSDWQ and WHO except for the pH of the borehole water which was not within the recommended range and which showed the water to be slightly acidic and which could attributable to the nature of the host rocks. WQI for borehole and hand dug well water were 29.65 and 27.38 respectively with the implication that both water sources presented good water quality for drinking based on the water quality index and water quality status. The results of the heavy metal analyses shows that in borehole and hand dug well water, the respective mean values were Cd (0.003±0.002 and 0.010±0.002 mg/dm3), Cr (0.187±0.075 and 0.19±0.070 mg/dm3), Cu (0.040±0.010 and 0.804±0.805 mg/dm3), Fe (0.500±0.330 and 0.916±0.543 mg/dm3), Pb (0.010±0.010 and 0.015±0.007 mg/dm3) and Zn (0.290±0.120 and 0.072±0.072 mg/dm3). The results shows that Cd, Cu, Pb and Zn for both borehole and hand dug well water had mean values that were within the standard permissible values recommended by NSDWQ and WHO while Cr and Fe had mean values that were higher and which can be attributed to anthropogenic activities close to the water sources. It is recommended the groundwater in these selected communities be monitored regularly and that there is the need for the water to be treated before use because of those parameters that are off the standards to avoid associated health risks.


Author(s):  
Runit Isaac ◽  
Shaziya Siddiqui

Abstract In this research, Water Quality Index and Multivariate Statistics Techniques was carried out on fourteen water quality parameters collected quarterly (four times/year) from nine water sources in Agra, Uttar Pradesh, India for one year (May 2019- April 2020). The Water Quality Parameters (WQP) included are the concentration of hydrogen ion (pH), Electrical conductivity, Turbidity, Total dissolved solids (TDS), Total Hardness, Total Alkalinity, Calcium, Sulphate, Chloride, Magnesium, Iron, COD, DO, and BOD. The Water sample collected shows that the mean values of physicochemical parameters are in the range of WHO and BIS except for Hardness in summer (1,680 mg/L); monsoon (832.22 mg/L); winter (1,876.66 mg/L); spring (1,535.55 mg/L), TDS in summer (1,000.33 mg/L); monsoon (683.44 mg/L); winter (1,087.66 mg/L); spring (776.66 mg/L) and sulphate (927.22 mg/L); monsoon (446.77 mg/L); winter (925.77 mg/L); spring (944.88 mg/L) which indicate the bad quality of water. The WQI values were calculated for three locations at different weather conditions. WQI values in summer, winter and spring are 630.90, 279.61, 279.91 shows that river water is not suitable for drinking purpose whereas the WQI value in monsoon is 75.89 shows that water is fit for drinking purposes due to the dilution of river water. A moderate positive correlation was observed for turbidity with total hardness, iron, total alkalinity, and sulphate. Negative Correlation was observed with pH. Moderate Correlation was seen with TDS-EC (0.608), TDS-Alkalinity (0.7794), EC-Ca (0.723) and strong was observed for BOD-DO (0.941) and Ca-Mg (0.999). Principal Component Analysis revealed that five factors were significant (eigen value > 0.5) with total variance of 39.43%–85.19% respectively. The ICP-MS study of water sample from point source indicate the presence of Ni2+, Cr6+, Co2+, Mn2+, Cu2+, Zn2+ ions at higher concentrations.


2014 ◽  
Vol 3 (1) ◽  
pp. 168-176 ◽  
Author(s):  
Hiren B Soni ◽  
Sheju Thomas

The present study involved the determination of surface water quality index of tropical sacred wetland viz. Dakor Pilgrimage Wetland (DPW), Central Gujarat, India. The main aim of the study was to evaluate various water quality parameters to draw-out the water quality index for an assessment of a tropical aquatic body. The monthly values of pH, Dissolved Oxygen (DO), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Total alkalinity (TA), Total Hardness (TH), Calcium Hardness (Ca), Magnesium Hardness (Mg), Chloride, Sulphate, Phosphate, Sodium, and Potassium, were analyzed to compute water quality index (WQI). The results manifest that WQI at site 1 (D1) was maximum (161.74), followed by D2 (159.96), and minimum at site 3 (D3) (157.19). The values clearly depicts that quality of water is completely unfit for human consumption unless and until strict and mandatory steps are taken to rejuvenate it. The suggestive measures to improve the overall health of an aquatic body is also discussed herewith alongwith conservation measures and management strategies. DOI: http://dx.doi.org/10.3126/ije.v3i1.9952 International Journal of Environment Vol.3(1) 2014: 168-176


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Santhosh Kumar Nadikatla ◽  
Venkata SubbaRao Mushini ◽  
Phani Surya Murali Krishna Mudumba

AbstractClean, safe and acceptable fresh water is fundamental to the existence of life. There is still a serious problem with adequate availability of fresh and quality of water for human consumption. This study, therefore, assesses the relevance of groundwater in the selected sites of villages of Palakonda mandal in the Srikakulam district of Andhra Pradesh, India, for consumption, based on different indices of water quality. Groundwater is the principal source for domestic and irrigation purposes in this region. In order to assess the quality of groundwater, 39 groundwater samples were collected during pre- and post-monsoon season from 2013 to 2016. The concentrations of physicochemical parameters such as pH, electrical conductivity, total dissolved solids, total hardness (TH), Ca(II), Mg(II), fluoride (F−), chloride (Cl−), dissolved oxygen, total alkalinity and nitrite (NO2−) were analyzed to compute Water Quality Index (WQI). The results of the concentrations were interpreted and compared with WHO (2012) and BIS (2012) standards. Correlation between various parameters was also computed, and the results were presented. The results of WQI computation infer that the groundwater of the selected sites in Palakonda mandal is rated as ‘good’ for human consumption.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Anita Bhatnagar ◽  
Pooja Devi ◽  
M. P. George

The present study was designed to assess the impact of mass bathing and religious activities on water quality index (WQI) of prominent water bodies (eight) in Haryana, India. Water quality characteristics revealed significant increase in the values of nitrate, biochemical oxygen demand (BOD), turbidity, total dissolved solids (TDS), conductivity, total hardness, total alkalinity, and MPN count after the religious activities. The computed WQI at all the eight selected sites varied from 47.55 to 211.42. The results revealed that there was a significant increase in the value of WQI after mass bathing or any other ritual performed. Out of eight water bodies studied three (sites 3, 4, and 5) were found under good water quality status; four sites (1, 2, 6, and 7) depicted medium water quality but site 8 was found under poor water quality after the religious activities. The good water quality status of water bodies was correlated with larger size of the water bodies and less number of pilgrims; however, the poor WQI values may be attributed to smaller size of the water body and heavy load of pilgrims on such sites. Therefore, water of these religious water bodies needed to be regularly changed after mass bathing to protect the aquatic component from different contaminations.


2020 ◽  
Vol 14 (2) ◽  
pp. 131-137
Author(s):  
Hemant Pathak

The present work is aimed at assessing the water quality index (WQI) for the Rajghat reservoir water on Bewas River life line of Sagar city. This has been determined by collecting water samples from selected 5 locations covered entire reservoir, and subjecting the samples to a most important physico-chemical analysis. 14 parameters have been considered: DO, water temperature, Conductivity, TDS, TSS, pH, Total hardness, calcium content, magnesium content, Total alkalinity, chloride, nitrate, o-Phosphate, and iron present in water samples. The results obtained reveal that the water quality of the area needs some degree of treatment before consumption. It therefore becomes imperative to regularly monitoring the quality of water to protect it. The objective of the present work is to compute water quality index values to assess the suitability of water for human consumption. Water level has a net positive effect on water quality in water body through dilution of environmental parameters. Consequently, local management agencies should pay more attention to nutrient concentrations during the monitoring schedule, as well as during the low-water periods which manifest a relatively bad water quality state.


Author(s):  
S.K. Pathak ◽  
Shambhu Prasad ◽  
Tanmay Pathak

The present paper was intended to calculate water quality index (WQI) of river Bhagirathi. It is one of the tributary of holy river Ganga of India. In order to determine the quality of its water for public use, recreation and other purposes , the eleven parameters like pH, electric conductivity, Total dissolve solids, Total suspended solids, Dissolve oxygen , Biological oxygen demand, Total alkalinity, Total hardness, Chloride, Nitrate and Sulphate were determine. The water quality index calculated from the observed parameters indicate the river Bhagirathi at  Uttarakhand during winter was under good water quality condition, while at summer and rainy season of showed poor water quality index. In terms of index number ,offers a useful representation of overall quality of water for public or for any intended use as well as in the pollution mitigate plan and in water quality management.


Sign in / Sign up

Export Citation Format

Share Document